Properties

Label 2-283140-1.1-c1-0-15
Degree $2$
Conductor $283140$
Sign $1$
Analytic cond. $2260.88$
Root an. cond. $47.5487$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 2·7-s + 13-s − 2·17-s + 2·19-s + 4·23-s + 25-s + 2·29-s − 2·31-s + 2·35-s + 2·37-s − 6·41-s − 6·47-s − 3·49-s + 2·53-s + 6·59-s − 14·61-s + 65-s + 2·67-s + 10·71-s + 6·73-s − 4·79-s + 2·83-s − 2·85-s + 14·89-s + 2·91-s + 2·95-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.755·7-s + 0.277·13-s − 0.485·17-s + 0.458·19-s + 0.834·23-s + 1/5·25-s + 0.371·29-s − 0.359·31-s + 0.338·35-s + 0.328·37-s − 0.937·41-s − 0.875·47-s − 3/7·49-s + 0.274·53-s + 0.781·59-s − 1.79·61-s + 0.124·65-s + 0.244·67-s + 1.18·71-s + 0.702·73-s − 0.450·79-s + 0.219·83-s − 0.216·85-s + 1.48·89-s + 0.209·91-s + 0.205·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 283140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 283140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(283140\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(2260.88\)
Root analytic conductor: \(47.5487\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 283140,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.696421774\)
\(L(\frac12)\) \(\approx\) \(3.696421774\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 \)
13 \( 1 - T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.93017862148374, −12.18338408413925, −11.82412741300363, −11.26389956124463, −11.00662452207359, −10.47155954384871, −10.01206314728647, −9.466977936811042, −9.041083415413993, −8.602701046881175, −8.096349924152273, −7.662192859735282, −7.107407448143748, −6.543259200644119, −6.251151697878240, −5.464138963628844, −5.157107185649681, −4.644698513103658, −4.195759905262090, −3.244266771109024, −3.186992218828061, −2.136426144630161, −1.892380184711440, −1.142061795598495, −0.5459545092526761, 0.5459545092526761, 1.142061795598495, 1.892380184711440, 2.136426144630161, 3.186992218828061, 3.244266771109024, 4.195759905262090, 4.644698513103658, 5.157107185649681, 5.464138963628844, 6.251151697878240, 6.543259200644119, 7.107407448143748, 7.662192859735282, 8.096349924152273, 8.602701046881175, 9.041083415413993, 9.466977936811042, 10.01206314728647, 10.47155954384871, 11.00662452207359, 11.26389956124463, 11.82412741300363, 12.18338408413925, 12.93017862148374

Graph of the $Z$-function along the critical line