Properties

Label 2-282240-1.1-c1-0-111
Degree $2$
Conductor $282240$
Sign $-1$
Analytic cond. $2253.69$
Root an. cond. $47.4731$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 2·11-s − 6·13-s − 8·17-s + 4·19-s − 4·23-s + 25-s + 2·29-s − 4·31-s + 2·37-s − 4·41-s − 6·43-s + 8·47-s + 2·53-s − 2·55-s + 4·59-s − 10·61-s + 6·65-s + 2·67-s − 8·71-s − 12·73-s + 4·79-s − 12·83-s + 8·85-s − 16·89-s − 4·95-s − 8·97-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.603·11-s − 1.66·13-s − 1.94·17-s + 0.917·19-s − 0.834·23-s + 1/5·25-s + 0.371·29-s − 0.718·31-s + 0.328·37-s − 0.624·41-s − 0.914·43-s + 1.16·47-s + 0.274·53-s − 0.269·55-s + 0.520·59-s − 1.28·61-s + 0.744·65-s + 0.244·67-s − 0.949·71-s − 1.40·73-s + 0.450·79-s − 1.31·83-s + 0.867·85-s − 1.69·89-s − 0.410·95-s − 0.812·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 282240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 282240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(282240\)    =    \(2^{7} \cdot 3^{2} \cdot 5 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(2253.69\)
Root analytic conductor: \(47.4731\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 282240,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
good11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 8 T + p T^{2} \) 1.17.i
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 12 T + p T^{2} \) 1.73.m
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 16 T + p T^{2} \) 1.89.q
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.86168081362315, −12.48427663678433, −11.86940768972194, −11.79415381113779, −11.19291648127910, −10.76147349737051, −10.07510411297570, −9.824184727147760, −9.281044033182516, −8.734809395575282, −8.498964654962336, −7.706157409494488, −7.309723035985523, −6.993996894270072, −6.492058125871103, −5.856807468520635, −5.336111828201634, −4.722008693611233, −4.329448884400371, −3.976378309326254, −3.106462974544129, −2.746308202679515, −2.019047999510468, −1.605368994186198, −0.5737039694904942, 0, 0.5737039694904942, 1.605368994186198, 2.019047999510468, 2.746308202679515, 3.106462974544129, 3.976378309326254, 4.329448884400371, 4.722008693611233, 5.336111828201634, 5.856807468520635, 6.492058125871103, 6.993996894270072, 7.309723035985523, 7.706157409494488, 8.498964654962336, 8.734809395575282, 9.281044033182516, 9.824184727147760, 10.07510411297570, 10.76147349737051, 11.19291648127910, 11.79415381113779, 11.86940768972194, 12.48427663678433, 12.86168081362315

Graph of the $Z$-function along the critical line