Properties

Label 2-281775-1.1-c1-0-24
Degree $2$
Conductor $281775$
Sign $-1$
Analytic cond. $2249.98$
Root an. cond. $47.4340$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s − 4-s + 6-s − 4·7-s + 3·8-s + 9-s − 4·11-s + 12-s − 13-s + 4·14-s − 16-s − 18-s + 4·21-s + 4·22-s − 3·24-s + 26-s − 27-s + 4·28-s + 10·29-s − 4·31-s − 5·32-s + 4·33-s − 36-s − 2·37-s + 39-s − 6·41-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s − 1/2·4-s + 0.408·6-s − 1.51·7-s + 1.06·8-s + 1/3·9-s − 1.20·11-s + 0.288·12-s − 0.277·13-s + 1.06·14-s − 1/4·16-s − 0.235·18-s + 0.872·21-s + 0.852·22-s − 0.612·24-s + 0.196·26-s − 0.192·27-s + 0.755·28-s + 1.85·29-s − 0.718·31-s − 0.883·32-s + 0.696·33-s − 1/6·36-s − 0.328·37-s + 0.160·39-s − 0.937·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 281775 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 281775 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(281775\)    =    \(3 \cdot 5^{2} \cdot 13 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(2249.98\)
Root analytic conductor: \(47.4340\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 281775,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 + T \)
5 \( 1 \)
13 \( 1 + T \)
17 \( 1 \)
good2 \( 1 + T + p T^{2} \) 1.2.b
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 4 T + p T^{2} \) 1.11.e
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.88247461701405, −12.53497735958554, −12.28748382568769, −11.43044763882888, −11.06711177663676, −10.31556503668217, −10.20775122812756, −9.966565317729758, −9.199860080008009, −9.042230289131460, −8.269245240016640, −7.989354724573297, −7.347560356060492, −6.853078761507541, −6.579338562922888, −5.738919594206982, −5.502860197614630, −4.877671114045576, −4.400249397772672, −3.797415232006423, −3.202773206364286, −2.642564203276219, −2.055132568800481, −1.103469573287093, −0.5408719604895804, 0, 0.5408719604895804, 1.103469573287093, 2.055132568800481, 2.642564203276219, 3.202773206364286, 3.797415232006423, 4.400249397772672, 4.877671114045576, 5.502860197614630, 5.738919594206982, 6.579338562922888, 6.853078761507541, 7.347560356060492, 7.989354724573297, 8.269245240016640, 9.042230289131460, 9.199860080008009, 9.966565317729758, 10.20775122812756, 10.31556503668217, 11.06711177663676, 11.43044763882888, 12.28748382568769, 12.53497735958554, 12.88247461701405

Graph of the $Z$-function along the critical line