Properties

Label 2-27456-1.1-c1-0-23
Degree $2$
Conductor $27456$
Sign $-1$
Analytic cond. $219.237$
Root an. cond. $14.8066$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s − 4·7-s + 9-s − 11-s + 13-s + 2·15-s + 2·17-s − 4·19-s + 4·21-s − 4·23-s − 25-s − 27-s + 2·29-s + 33-s + 8·35-s + 2·37-s − 39-s + 10·41-s − 4·43-s − 2·45-s + 4·47-s + 9·49-s − 2·51-s − 2·53-s + 2·55-s + 4·57-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s − 1.51·7-s + 1/3·9-s − 0.301·11-s + 0.277·13-s + 0.516·15-s + 0.485·17-s − 0.917·19-s + 0.872·21-s − 0.834·23-s − 1/5·25-s − 0.192·27-s + 0.371·29-s + 0.174·33-s + 1.35·35-s + 0.328·37-s − 0.160·39-s + 1.56·41-s − 0.609·43-s − 0.298·45-s + 0.583·47-s + 9/7·49-s − 0.280·51-s − 0.274·53-s + 0.269·55-s + 0.529·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27456 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27456\)    =    \(2^{6} \cdot 3 \cdot 11 \cdot 13\)
Sign: $-1$
Analytic conductor: \(219.237\)
Root analytic conductor: \(14.8066\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 27456,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 + T \)
13 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 4 T + p T^{2} \) 1.7.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.67833644783175, −15.20333429475629, −14.51019791815537, −13.83739800628587, −13.19370895341594, −12.82740739800871, −12.12897328898469, −12.04751053717090, −11.15494724947211, −10.70393343850341, −10.12571485754595, −9.652807175233691, −9.012588975605763, −8.334998952726606, −7.681493663582129, −7.248011737797975, −6.455538003926664, −6.058929937328750, −5.587860596667614, −4.450787352771622, −4.198063253938310, −3.370465103510754, −2.875891998256867, −1.867693190772186, −0.6814345856670516, 0, 0.6814345856670516, 1.867693190772186, 2.875891998256867, 3.370465103510754, 4.198063253938310, 4.450787352771622, 5.587860596667614, 6.058929937328750, 6.455538003926664, 7.248011737797975, 7.681493663582129, 8.334998952726606, 9.012588975605763, 9.652807175233691, 10.12571485754595, 10.70393343850341, 11.15494724947211, 12.04751053717090, 12.12897328898469, 12.82740739800871, 13.19370895341594, 13.83739800628587, 14.51019791815537, 15.20333429475629, 15.67833644783175

Graph of the $Z$-function along the critical line