Properties

Label 2-27378-1.1-c1-0-17
Degree $2$
Conductor $27378$
Sign $-1$
Analytic cond. $218.614$
Root an. cond. $14.7856$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 2·5-s + 2·7-s − 8-s − 2·10-s − 11-s − 2·14-s + 16-s + 17-s + 5·19-s + 2·20-s + 22-s − 25-s + 2·28-s − 2·31-s − 32-s − 34-s + 4·35-s + 8·37-s − 5·38-s − 2·40-s + 5·41-s − 11·43-s − 44-s + 8·47-s − 3·49-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.894·5-s + 0.755·7-s − 0.353·8-s − 0.632·10-s − 0.301·11-s − 0.534·14-s + 1/4·16-s + 0.242·17-s + 1.14·19-s + 0.447·20-s + 0.213·22-s − 1/5·25-s + 0.377·28-s − 0.359·31-s − 0.176·32-s − 0.171·34-s + 0.676·35-s + 1.31·37-s − 0.811·38-s − 0.316·40-s + 0.780·41-s − 1.67·43-s − 0.150·44-s + 1.16·47-s − 3/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27378 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27378 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27378\)    =    \(2 \cdot 3^{4} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(218.614\)
Root analytic conductor: \(14.7856\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 27378,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
13 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + T + p T^{2} \) 1.11.b
17 \( 1 - T + p T^{2} \) 1.17.ab
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 + 11 T + p T^{2} \) 1.43.l
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 11 T + p T^{2} \) 1.59.l
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 + 5 T + p T^{2} \) 1.73.f
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 19 T + p T^{2} \) 1.97.t
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.59809320046603, −14.93034448086934, −14.55263858424209, −13.86293386304336, −13.51229681137162, −12.90207730546889, −12.09603064779968, −11.77784852785757, −11.02141519948155, −10.68304412680053, −9.990907912488514, −9.481995333500228, −9.172023422951274, −8.336844865381169, −7.806486583557322, −7.430422238474198, −6.645904492827517, −5.913870698740339, −5.554817660700399, −4.839943992120599, −4.117970213187441, −3.063702545428003, −2.598480766969772, −1.590708903691650, −1.305791472431542, 0, 1.305791472431542, 1.590708903691650, 2.598480766969772, 3.063702545428003, 4.117970213187441, 4.839943992120599, 5.554817660700399, 5.913870698740339, 6.645904492827517, 7.430422238474198, 7.806486583557322, 8.336844865381169, 9.172023422951274, 9.481995333500228, 9.990907912488514, 10.68304412680053, 11.02141519948155, 11.77784852785757, 12.09603064779968, 12.90207730546889, 13.51229681137162, 13.86293386304336, 14.55263858424209, 14.93034448086934, 15.59809320046603

Graph of the $Z$-function along the critical line