Properties

Label 2-165e2-1.1-c1-0-32
Degree $2$
Conductor $27225$
Sign $-1$
Analytic cond. $217.392$
Root an. cond. $14.7442$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 7-s + 2·13-s + 4·16-s − 6·17-s + 7·19-s − 6·23-s + 2·28-s − 31-s + 7·37-s − 6·41-s + 8·43-s − 6·49-s − 4·52-s − 6·53-s + 12·59-s + 61-s − 8·64-s + 7·67-s + 12·68-s − 6·71-s − 13·73-s − 14·76-s − 11·79-s + 18·89-s − 2·91-s + 12·92-s + ⋯
L(s)  = 1  − 4-s − 0.377·7-s + 0.554·13-s + 16-s − 1.45·17-s + 1.60·19-s − 1.25·23-s + 0.377·28-s − 0.179·31-s + 1.15·37-s − 0.937·41-s + 1.21·43-s − 6/7·49-s − 0.554·52-s − 0.824·53-s + 1.56·59-s + 0.128·61-s − 64-s + 0.855·67-s + 1.45·68-s − 0.712·71-s − 1.52·73-s − 1.60·76-s − 1.23·79-s + 1.90·89-s − 0.209·91-s + 1.25·92-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27225\)    =    \(3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(217.392\)
Root analytic conductor: \(14.7442\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 27225,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
11 \( 1 \)
good2 \( 1 + p T^{2} \) 1.2.a
7 \( 1 + T + p T^{2} \) 1.7.b
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 13 T + p T^{2} \) 1.73.n
79 \( 1 + 11 T + p T^{2} \) 1.79.l
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.69705289085765, −14.82741953079423, −14.44492549035837, −13.78534377273250, −13.42607513796416, −13.02704994969815, −12.43308735341442, −11.70473749464523, −11.34375571026129, −10.56848972639650, −9.972915114395134, −9.501885903320510, −9.065264819050335, −8.414559908481644, −7.940249082623094, −7.261810359606210, −6.547862296016837, −5.895423627456064, −5.415297817270274, −4.600016856440417, −4.134159268042565, −3.480179437028206, −2.790823427094901, −1.815042792053256, −0.8948897220423774, 0, 0.8948897220423774, 1.815042792053256, 2.790823427094901, 3.480179437028206, 4.134159268042565, 4.600016856440417, 5.415297817270274, 5.895423627456064, 6.547862296016837, 7.261810359606210, 7.940249082623094, 8.414559908481644, 9.065264819050335, 9.501885903320510, 9.972915114395134, 10.56848972639650, 11.34375571026129, 11.70473749464523, 12.43308735341442, 13.02704994969815, 13.42607513796416, 13.78534377273250, 14.44492549035837, 14.82741953079423, 15.69705289085765

Graph of the $Z$-function along the critical line