Properties

Label 2-165e2-1.1-c1-0-41
Degree $2$
Conductor $27225$
Sign $-1$
Analytic cond. $217.392$
Root an. cond. $14.7442$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s + 7-s − 3·8-s − 2·13-s + 14-s − 16-s − 3·17-s + 3·19-s − 23-s − 2·26-s − 28-s + 6·29-s + 2·31-s + 5·32-s − 3·34-s − 3·37-s + 3·38-s + 3·41-s − 12·43-s − 46-s + 47-s − 6·49-s + 2·52-s + 6·53-s − 3·56-s + 6·58-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s + 0.377·7-s − 1.06·8-s − 0.554·13-s + 0.267·14-s − 1/4·16-s − 0.727·17-s + 0.688·19-s − 0.208·23-s − 0.392·26-s − 0.188·28-s + 1.11·29-s + 0.359·31-s + 0.883·32-s − 0.514·34-s − 0.493·37-s + 0.486·38-s + 0.468·41-s − 1.82·43-s − 0.147·46-s + 0.145·47-s − 6/7·49-s + 0.277·52-s + 0.824·53-s − 0.400·56-s + 0.787·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27225\)    =    \(3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(217.392\)
Root analytic conductor: \(14.7442\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 27225,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
11 \( 1 \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
7 \( 1 - T + p T^{2} \) 1.7.ab
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - T + p T^{2} \) 1.47.ab
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 6 T + p T^{2} \) 1.67.g
71 \( 1 - 7 T + p T^{2} \) 1.71.ah
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 7 T + p T^{2} \) 1.79.h
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 3 T + p T^{2} \) 1.97.ad
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.43877652895571, −14.69652718428498, −14.58914882996825, −13.82556606888042, −13.46958475786243, −13.01393799190335, −12.27689634305106, −11.90973530650835, −11.45765954278035, −10.69750642556191, −9.983616473313691, −9.661782607452710, −8.892692638440453, −8.400509925580081, −7.939708550455215, −6.998948814275623, −6.620599798679025, −5.798242891583582, −5.224270546028373, −4.730462040032714, −4.220081198180473, −3.449279619142222, −2.827857202321235, −2.053074472557207, −1.002031089540292, 0, 1.002031089540292, 2.053074472557207, 2.827857202321235, 3.449279619142222, 4.220081198180473, 4.730462040032714, 5.224270546028373, 5.798242891583582, 6.620599798679025, 6.998948814275623, 7.939708550455215, 8.400509925580081, 8.892692638440453, 9.661782607452710, 9.983616473313691, 10.69750642556191, 11.45765954278035, 11.90973530650835, 12.27689634305106, 13.01393799190335, 13.46958475786243, 13.82556606888042, 14.58914882996825, 14.69652718428498, 15.43877652895571

Graph of the $Z$-function along the critical line