Properties

Label 2-271062-1.1-c1-0-25
Degree $2$
Conductor $271062$
Sign $-1$
Analytic cond. $2164.44$
Root an. cond. $46.5235$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 7-s − 8-s + 11-s + 13-s + 14-s + 16-s + 4·19-s − 22-s + 6·23-s − 5·25-s − 26-s − 28-s − 5·31-s − 32-s − 4·38-s + 7·43-s + 44-s − 6·46-s − 6·47-s − 6·49-s + 5·50-s + 52-s + 12·53-s + 56-s − 12·59-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.377·7-s − 0.353·8-s + 0.301·11-s + 0.277·13-s + 0.267·14-s + 1/4·16-s + 0.917·19-s − 0.213·22-s + 1.25·23-s − 25-s − 0.196·26-s − 0.188·28-s − 0.898·31-s − 0.176·32-s − 0.648·38-s + 1.06·43-s + 0.150·44-s − 0.884·46-s − 0.875·47-s − 6/7·49-s + 0.707·50-s + 0.138·52-s + 1.64·53-s + 0.133·56-s − 1.56·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 271062 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 271062 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(271062\)    =    \(2 \cdot 3^{2} \cdot 11 \cdot 37^{2}\)
Sign: $-1$
Analytic conductor: \(2164.44\)
Root analytic conductor: \(46.5235\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 271062,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
11 \( 1 - T \)
37 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + T + p T^{2} \) 1.7.b
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 5 T + p T^{2} \) 1.31.f
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 7 T + p T^{2} \) 1.43.ah
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + T + p T^{2} \) 1.67.b
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 + 5 T + p T^{2} \) 1.79.f
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 5 T + p T^{2} \) 1.97.f
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.92856298839823, −12.61413434312371, −11.86523843053442, −11.63273020964959, −11.13668302866771, −10.70035693654356, −10.18924749391824, −9.681537137707913, −9.275544432692061, −9.000700026973588, −8.398520279939964, −7.847692010217983, −7.429707007370551, −7.006278182375118, −6.451018673576126, −6.039110058160730, −5.370398485950712, −5.075275734275852, −4.205910269073801, −3.689595844638741, −3.220231376056612, −2.635591148694651, −1.990410675799817, −1.331060191387186, −0.7942695970486551, 0, 0.7942695970486551, 1.331060191387186, 1.990410675799817, 2.635591148694651, 3.220231376056612, 3.689595844638741, 4.205910269073801, 5.075275734275852, 5.370398485950712, 6.039110058160730, 6.451018673576126, 7.006278182375118, 7.429707007370551, 7.847692010217983, 8.398520279939964, 9.000700026973588, 9.275544432692061, 9.681537137707913, 10.18924749391824, 10.70035693654356, 11.13668302866771, 11.63273020964959, 11.86523843053442, 12.61413434312371, 12.92856298839823

Graph of the $Z$-function along the critical line