Properties

Label 2-271040-1.1-c1-0-140
Degree $2$
Conductor $271040$
Sign $-1$
Analytic cond. $2164.26$
Root an. cond. $46.5216$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 5-s + 7-s + 9-s + 2·13-s − 2·15-s + 6·17-s − 2·19-s − 2·21-s + 6·23-s + 25-s + 4·27-s − 8·31-s + 35-s + 4·37-s − 4·39-s − 12·41-s + 4·43-s + 45-s − 12·47-s + 49-s − 12·51-s + 4·57-s + 2·61-s + 63-s + 2·65-s + 8·67-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.447·5-s + 0.377·7-s + 1/3·9-s + 0.554·13-s − 0.516·15-s + 1.45·17-s − 0.458·19-s − 0.436·21-s + 1.25·23-s + 1/5·25-s + 0.769·27-s − 1.43·31-s + 0.169·35-s + 0.657·37-s − 0.640·39-s − 1.87·41-s + 0.609·43-s + 0.149·45-s − 1.75·47-s + 1/7·49-s − 1.68·51-s + 0.529·57-s + 0.256·61-s + 0.125·63-s + 0.248·65-s + 0.977·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 271040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 271040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(271040\)    =    \(2^{6} \cdot 5 \cdot 7 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(2164.26\)
Root analytic conductor: \(46.5216\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 271040,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
7 \( 1 - T \)
11 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.95260946851092, −12.54061770699606, −11.96434748057232, −11.64554610912362, −11.10050296722067, −10.84307592122228, −10.37005329225306, −9.869827099023764, −9.421104523625567, −8.780447589958400, −8.426430254460365, −7.836498443427459, −7.289940644050378, −6.760222880031073, −6.337269816705729, −5.838469656214438, −5.325836172191551, −5.114536782981972, −4.560962440707362, −3.772951414094325, −3.293943420143253, −2.733475296139695, −1.842090666933771, −1.369263089896060, −0.8006823502467607, 0, 0.8006823502467607, 1.369263089896060, 1.842090666933771, 2.733475296139695, 3.293943420143253, 3.772951414094325, 4.560962440707362, 5.114536782981972, 5.325836172191551, 5.838469656214438, 6.337269816705729, 6.760222880031073, 7.289940644050378, 7.836498443427459, 8.426430254460365, 8.780447589958400, 9.421104523625567, 9.869827099023764, 10.37005329225306, 10.84307592122228, 11.10050296722067, 11.64554610912362, 11.96434748057232, 12.54061770699606, 12.95260946851092

Graph of the $Z$-function along the critical line