Properties

Label 2-265200-1.1-c1-0-21
Degree $2$
Conductor $265200$
Sign $1$
Analytic cond. $2117.63$
Root an. cond. $46.0177$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·7-s + 9-s + 2·11-s + 13-s + 17-s − 6·19-s − 2·21-s − 4·23-s − 27-s + 2·29-s − 2·31-s − 2·33-s + 2·37-s − 39-s − 10·41-s − 8·43-s + 6·47-s − 3·49-s − 51-s + 2·53-s + 6·57-s + 6·59-s − 2·61-s + 2·63-s + 2·67-s + 4·69-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.755·7-s + 1/3·9-s + 0.603·11-s + 0.277·13-s + 0.242·17-s − 1.37·19-s − 0.436·21-s − 0.834·23-s − 0.192·27-s + 0.371·29-s − 0.359·31-s − 0.348·33-s + 0.328·37-s − 0.160·39-s − 1.56·41-s − 1.21·43-s + 0.875·47-s − 3/7·49-s − 0.140·51-s + 0.274·53-s + 0.794·57-s + 0.781·59-s − 0.256·61-s + 0.251·63-s + 0.244·67-s + 0.481·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 265200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 265200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(265200\)    =    \(2^{4} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17\)
Sign: $1$
Analytic conductor: \(2117.63\)
Root analytic conductor: \(46.0177\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 265200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.358753209\)
\(L(\frac12)\) \(\approx\) \(1.358753209\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
13 \( 1 - T \)
17 \( 1 - T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.84735996208925, −12.13140230068858, −11.86063646849205, −11.54806130200309, −10.86326106361188, −10.66916599062410, −10.02683354901330, −9.755591077892861, −8.923973093534444, −8.654020937305996, −8.091037005067747, −7.775812065988636, −6.969738211864564, −6.633549438157532, −6.236835879348795, −5.585800558748797, −5.201621257369446, −4.594607543662985, −4.121993100999573, −3.731585056447882, −2.991837135895331, −2.191928919852339, −1.713561774176855, −1.214747688968773, −0.3342347438998186, 0.3342347438998186, 1.214747688968773, 1.713561774176855, 2.191928919852339, 2.991837135895331, 3.731585056447882, 4.121993100999573, 4.594607543662985, 5.201621257369446, 5.585800558748797, 6.236835879348795, 6.633549438157532, 6.969738211864564, 7.775812065988636, 8.091037005067747, 8.654020937305996, 8.923973093534444, 9.755591077892861, 10.02683354901330, 10.66916599062410, 10.86326106361188, 11.54806130200309, 11.86063646849205, 12.13140230068858, 12.84735996208925

Graph of the $Z$-function along the critical line