Properties

Label 2-264992-1.1-c1-0-22
Degree $2$
Conductor $264992$
Sign $1$
Analytic cond. $2115.97$
Root an. cond. $45.9996$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 3·5-s + 9-s − 6·15-s + 17-s − 2·19-s + 6·23-s + 4·25-s − 4·27-s − 3·29-s − 2·31-s + 3·37-s + 7·41-s − 8·43-s − 3·45-s − 2·47-s + 2·51-s + 5·53-s − 4·57-s + 3·61-s + 2·67-s + 12·69-s + 10·71-s + 11·73-s + 8·75-s + 4·79-s − 11·81-s + ⋯
L(s)  = 1  + 1.15·3-s − 1.34·5-s + 1/3·9-s − 1.54·15-s + 0.242·17-s − 0.458·19-s + 1.25·23-s + 4/5·25-s − 0.769·27-s − 0.557·29-s − 0.359·31-s + 0.493·37-s + 1.09·41-s − 1.21·43-s − 0.447·45-s − 0.291·47-s + 0.280·51-s + 0.686·53-s − 0.529·57-s + 0.384·61-s + 0.244·67-s + 1.44·69-s + 1.18·71-s + 1.28·73-s + 0.923·75-s + 0.450·79-s − 1.22·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 264992 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 264992 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(264992\)    =    \(2^{5} \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(2115.97\)
Root analytic conductor: \(45.9996\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 264992,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.351116158\)
\(L(\frac12)\) \(\approx\) \(2.351116158\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
13 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - T + p T^{2} \) 1.17.ab
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 - 7 T + p T^{2} \) 1.41.ah
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 5 T + p T^{2} \) 1.53.af
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 3 T + p T^{2} \) 1.61.ad
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.88001341102966, −12.37669406035662, −11.84253196438923, −11.46228013035961, −10.88909280725652, −10.73809525078671, −9.793799816331973, −9.514526632403467, −8.956769573973015, −8.569562653248315, −8.080611293197550, −7.808100743919489, −7.314964428122523, −6.846095381324295, −6.318123869108338, −5.502807461303164, −5.103463561995528, −4.359019235625537, −4.006067614125148, −3.391701513877644, −3.200178219744525, −2.430778199652233, −1.987727156917172, −1.078332608026750, −0.4180946717317457, 0.4180946717317457, 1.078332608026750, 1.987727156917172, 2.430778199652233, 3.200178219744525, 3.391701513877644, 4.006067614125148, 4.359019235625537, 5.103463561995528, 5.502807461303164, 6.318123869108338, 6.846095381324295, 7.314964428122523, 7.808100743919489, 8.080611293197550, 8.569562653248315, 8.956769573973015, 9.514526632403467, 9.793799816331973, 10.73809525078671, 10.88909280725652, 11.46228013035961, 11.84253196438923, 12.37669406035662, 12.88001341102966

Graph of the $Z$-function along the critical line