Properties

Label 2-264992-1.1-c1-0-25
Degree $2$
Conductor $264992$
Sign $-1$
Analytic cond. $2115.97$
Root an. cond. $45.9996$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 3·5-s + 6·9-s + 4·11-s + 9·15-s − 5·17-s − 6·19-s − 6·23-s + 4·25-s − 9·27-s − 4·29-s − 12·33-s + 3·37-s + 12·41-s − 3·43-s − 18·45-s − 7·47-s + 15·51-s − 2·53-s − 12·55-s + 18·57-s + 2·59-s + 12·61-s + 4·67-s + 18·69-s − 11·71-s + 6·73-s + ⋯
L(s)  = 1  − 1.73·3-s − 1.34·5-s + 2·9-s + 1.20·11-s + 2.32·15-s − 1.21·17-s − 1.37·19-s − 1.25·23-s + 4/5·25-s − 1.73·27-s − 0.742·29-s − 2.08·33-s + 0.493·37-s + 1.87·41-s − 0.457·43-s − 2.68·45-s − 1.02·47-s + 2.10·51-s − 0.274·53-s − 1.61·55-s + 2.38·57-s + 0.260·59-s + 1.53·61-s + 0.488·67-s + 2.16·69-s − 1.30·71-s + 0.702·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 264992 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 264992 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(264992\)    =    \(2^{5} \cdot 7^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(2115.97\)
Root analytic conductor: \(45.9996\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 264992,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
13 \( 1 \)
good3 \( 1 + p T + p T^{2} \) 1.3.d
5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 + 3 T + p T^{2} \) 1.43.d
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 - 12 T + p T^{2} \) 1.61.am
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 11 T + p T^{2} \) 1.71.l
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 + 10 T + p T^{2} \) 1.83.k
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.81681895842949, −12.53050183887396, −11.86293294271180, −11.62217844959962, −11.26885482661112, −11.03888658269220, −10.40174584882108, −10.00273556375758, −9.312209001740837, −8.910238989066779, −8.226779089908982, −7.881203753681238, −7.212445799527558, −6.759494259786863, −6.449303102639595, −5.980025949998583, −5.504537668270406, −4.638877678397305, −4.452431856416606, −3.887289267641115, −3.767184167430178, −2.587425528043060, −1.914097911813065, −1.254687214151496, −0.4678913926091426, 0, 0.4678913926091426, 1.254687214151496, 1.914097911813065, 2.587425528043060, 3.767184167430178, 3.887289267641115, 4.452431856416606, 4.638877678397305, 5.504537668270406, 5.980025949998583, 6.449303102639595, 6.759494259786863, 7.212445799527558, 7.881203753681238, 8.226779089908982, 8.910238989066779, 9.312209001740837, 10.00273556375758, 10.40174584882108, 11.03888658269220, 11.26885482661112, 11.62217844959962, 11.86293294271180, 12.53050183887396, 12.81681895842949

Graph of the $Z$-function along the critical line