Properties

Label 2-257754-1.1-c1-0-52
Degree $2$
Conductor $257754$
Sign $-1$
Analytic cond. $2058.17$
Root an. cond. $45.3671$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 3·5-s + 6-s + 7-s − 8-s + 9-s − 3·10-s − 12-s + 4·13-s − 14-s − 3·15-s + 16-s − 17-s − 18-s + 3·20-s − 21-s + 3·23-s + 24-s + 4·25-s − 4·26-s − 27-s + 28-s − 9·29-s + 3·30-s − 11·31-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 1.34·5-s + 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s − 0.948·10-s − 0.288·12-s + 1.10·13-s − 0.267·14-s − 0.774·15-s + 1/4·16-s − 0.242·17-s − 0.235·18-s + 0.670·20-s − 0.218·21-s + 0.625·23-s + 0.204·24-s + 4/5·25-s − 0.784·26-s − 0.192·27-s + 0.188·28-s − 1.67·29-s + 0.547·30-s − 1.97·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 257754 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 257754 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(257754\)    =    \(2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(2058.17\)
Root analytic conductor: \(45.3671\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 257754,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
7 \( 1 - T \)
17 \( 1 + T \)
19 \( 1 \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 + 11 T + p T^{2} \) 1.31.l
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + 17 T + p T^{2} \) 1.79.r
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.99346495975361, −12.85953466589699, −11.98193597696462, −11.45678005123154, −11.00568904765707, −10.87110407360932, −10.36295080754025, −9.589790994658306, −9.494528839211788, −8.985983971178778, −8.556004577323466, −7.869202758209711, −7.375178558621993, −6.987598921799353, −6.247034756975719, −5.994701651422482, −5.590216557324019, −5.115526000175433, −4.431155206738999, −3.759116196043744, −3.223446415600260, −2.398987437032057, −1.868342604091830, −1.499066842828357, −0.8712493114171333, 0, 0.8712493114171333, 1.499066842828357, 1.868342604091830, 2.398987437032057, 3.223446415600260, 3.759116196043744, 4.431155206738999, 5.115526000175433, 5.590216557324019, 5.994701651422482, 6.247034756975719, 6.987598921799353, 7.375178558621993, 7.869202758209711, 8.556004577323466, 8.985983971178778, 9.494528839211788, 9.589790994658306, 10.36295080754025, 10.87110407360932, 11.00568904765707, 11.45678005123154, 11.98193597696462, 12.85953466589699, 12.99346495975361

Graph of the $Z$-function along the critical line