Properties

Label 2-255162-1.1-c1-0-9
Degree $2$
Conductor $255162$
Sign $1$
Analytic cond. $2037.47$
Root an. cond. $45.1384$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s + 4·7-s − 8-s + 9-s + 3·11-s − 12-s − 4·13-s − 4·14-s + 16-s − 3·17-s − 18-s + 7·19-s − 4·21-s − 3·22-s − 23-s + 24-s − 5·25-s + 4·26-s − 27-s + 4·28-s + 8·31-s − 32-s − 3·33-s + 3·34-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s + 1.51·7-s − 0.353·8-s + 1/3·9-s + 0.904·11-s − 0.288·12-s − 1.10·13-s − 1.06·14-s + 1/4·16-s − 0.727·17-s − 0.235·18-s + 1.60·19-s − 0.872·21-s − 0.639·22-s − 0.208·23-s + 0.204·24-s − 25-s + 0.784·26-s − 0.192·27-s + 0.755·28-s + 1.43·31-s − 0.176·32-s − 0.522·33-s + 0.514·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 255162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 255162 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(255162\)    =    \(2 \cdot 3 \cdot 23 \cdot 43^{2}\)
Sign: $1$
Analytic conductor: \(2037.47\)
Root analytic conductor: \(45.1384\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 255162,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.041314299\)
\(L(\frac12)\) \(\approx\) \(2.041314299\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
23 \( 1 + T \)
43 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 9 T + p T^{2} \) 1.41.j
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + T + p T^{2} \) 1.67.b
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - T + p T^{2} \) 1.73.ab
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.50734060436918, −12.13074339441855, −11.77539287522115, −11.43770741106707, −11.21185178541712, −10.35097263675138, −10.17255047911480, −9.601538531458971, −9.156930922196327, −8.625021845528165, −8.124483921734987, −7.667569076540573, −7.236680597879455, −6.858679526441222, −6.213029532400765, −5.639836503494043, −5.212556457836624, −4.583397011468668, −4.359621987969237, −3.523777996465990, −2.868626390284151, −2.029761658203546, −1.790377495410768, −1.038217444911894, −0.5174842970014336, 0.5174842970014336, 1.038217444911894, 1.790377495410768, 2.029761658203546, 2.868626390284151, 3.523777996465990, 4.359621987969237, 4.583397011468668, 5.212556457836624, 5.639836503494043, 6.213029532400765, 6.858679526441222, 7.236680597879455, 7.667569076540573, 8.124483921734987, 8.625021845528165, 9.156930922196327, 9.601538531458971, 10.17255047911480, 10.35097263675138, 11.21185178541712, 11.43770741106707, 11.77539287522115, 12.13074339441855, 12.50734060436918

Graph of the $Z$-function along the critical line