Properties

Label 2-25410-1.1-c1-0-37
Degree $2$
Conductor $25410$
Sign $-1$
Analytic cond. $202.899$
Root an. cond. $14.2442$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 5-s − 6-s − 7-s − 8-s + 9-s + 10-s + 12-s − 2·13-s + 14-s − 15-s + 16-s − 6·17-s − 18-s + 4·19-s − 20-s − 21-s − 24-s + 25-s + 2·26-s + 27-s − 28-s − 6·29-s + 30-s + 8·31-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.288·12-s − 0.554·13-s + 0.267·14-s − 0.258·15-s + 1/4·16-s − 1.45·17-s − 0.235·18-s + 0.917·19-s − 0.223·20-s − 0.218·21-s − 0.204·24-s + 1/5·25-s + 0.392·26-s + 0.192·27-s − 0.188·28-s − 1.11·29-s + 0.182·30-s + 1.43·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25410 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25410 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(25410\)    =    \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(202.899\)
Root analytic conductor: \(14.2442\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 25410,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 + T \)
11 \( 1 \)
good13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.73761474746110, −15.13118045448629, −14.78659616334364, −13.93608347930759, −13.52093113535872, −12.99316571739196, −12.22631444357393, −11.87045210105580, −11.22532695021675, −10.64450977260882, −10.08022520249080, −9.425565974861081, −9.153901758055326, −8.347089462808472, −8.076351545992354, −7.184856456720106, −6.954952440798238, −6.297712898022724, −5.354467200028155, −4.761279043651408, −3.882045469218351, −3.374371362116691, −2.515619256867975, −2.028522780881507, −0.9382164975508313, 0, 0.9382164975508313, 2.028522780881507, 2.515619256867975, 3.374371362116691, 3.882045469218351, 4.761279043651408, 5.354467200028155, 6.297712898022724, 6.954952440798238, 7.184856456720106, 8.076351545992354, 8.347089462808472, 9.153901758055326, 9.425565974861081, 10.08022520249080, 10.64450977260882, 11.22532695021675, 11.87045210105580, 12.22631444357393, 12.99316571739196, 13.52093113535872, 13.93608347930759, 14.78659616334364, 15.13118045448629, 15.73761474746110

Graph of the $Z$-function along the critical line