L(s) = 1 | − 2-s + 3-s + 4-s − 5-s − 6-s − 7-s − 8-s + 9-s + 10-s + 12-s − 2·13-s + 14-s − 15-s + 16-s − 6·17-s − 18-s + 4·19-s − 20-s − 21-s − 24-s + 25-s + 2·26-s + 27-s − 28-s − 6·29-s + 30-s + 8·31-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.288·12-s − 0.554·13-s + 0.267·14-s − 0.258·15-s + 1/4·16-s − 1.45·17-s − 0.235·18-s + 0.917·19-s − 0.223·20-s − 0.218·21-s − 0.204·24-s + 1/5·25-s + 0.392·26-s + 0.192·27-s − 0.188·28-s − 1.11·29-s + 0.182·30-s + 1.43·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 25410 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25410 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
---|
bad | 2 | \( 1 + T \) | |
| 3 | \( 1 - T \) | |
| 5 | \( 1 + T \) | |
| 7 | \( 1 + T \) | |
| 11 | \( 1 \) | |
good | 13 | \( 1 + 2 T + p T^{2} \) | 1.13.c |
| 17 | \( 1 + 6 T + p T^{2} \) | 1.17.g |
| 19 | \( 1 - 4 T + p T^{2} \) | 1.19.ae |
| 23 | \( 1 + p T^{2} \) | 1.23.a |
| 29 | \( 1 + 6 T + p T^{2} \) | 1.29.g |
| 31 | \( 1 - 8 T + p T^{2} \) | 1.31.ai |
| 37 | \( 1 + 10 T + p T^{2} \) | 1.37.k |
| 41 | \( 1 - 6 T + p T^{2} \) | 1.41.ag |
| 43 | \( 1 + 8 T + p T^{2} \) | 1.43.i |
| 47 | \( 1 + p T^{2} \) | 1.47.a |
| 53 | \( 1 - 6 T + p T^{2} \) | 1.53.ag |
| 59 | \( 1 - 12 T + p T^{2} \) | 1.59.am |
| 61 | \( 1 + 2 T + p T^{2} \) | 1.61.c |
| 67 | \( 1 + 4 T + p T^{2} \) | 1.67.e |
| 71 | \( 1 - 12 T + p T^{2} \) | 1.71.am |
| 73 | \( 1 - 10 T + p T^{2} \) | 1.73.ak |
| 79 | \( 1 - 4 T + p T^{2} \) | 1.79.ae |
| 83 | \( 1 - 12 T + p T^{2} \) | 1.83.am |
| 89 | \( 1 - 6 T + p T^{2} \) | 1.89.ag |
| 97 | \( 1 + 10 T + p T^{2} \) | 1.97.k |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.73761474746110, −15.13118045448629, −14.78659616334364, −13.93608347930759, −13.52093113535872, −12.99316571739196, −12.22631444357393, −11.87045210105580, −11.22532695021675, −10.64450977260882, −10.08022520249080, −9.425565974861081, −9.153901758055326, −8.347089462808472, −8.076351545992354, −7.184856456720106, −6.954952440798238, −6.297712898022724, −5.354467200028155, −4.761279043651408, −3.882045469218351, −3.374371362116691, −2.515619256867975, −2.028522780881507, −0.9382164975508313, 0,
0.9382164975508313, 2.028522780881507, 2.515619256867975, 3.374371362116691, 3.882045469218351, 4.761279043651408, 5.354467200028155, 6.297712898022724, 6.954952440798238, 7.184856456720106, 8.076351545992354, 8.347089462808472, 9.153901758055326, 9.425565974861081, 10.08022520249080, 10.64450977260882, 11.22532695021675, 11.87045210105580, 12.22631444357393, 12.99316571739196, 13.52093113535872, 13.93608347930759, 14.78659616334364, 15.13118045448629, 15.73761474746110