Properties

Label 2-25410-1.1-c1-0-45
Degree $2$
Conductor $25410$
Sign $-1$
Analytic cond. $202.899$
Root an. cond. $14.2442$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 5-s − 6-s + 7-s + 8-s + 9-s − 10-s − 12-s − 2·13-s + 14-s + 15-s + 16-s − 8·17-s + 18-s + 8·19-s − 20-s − 21-s − 6·23-s − 24-s + 25-s − 2·26-s − 27-s + 28-s + 2·29-s + 30-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.288·12-s − 0.554·13-s + 0.267·14-s + 0.258·15-s + 1/4·16-s − 1.94·17-s + 0.235·18-s + 1.83·19-s − 0.223·20-s − 0.218·21-s − 1.25·23-s − 0.204·24-s + 1/5·25-s − 0.392·26-s − 0.192·27-s + 0.188·28-s + 0.371·29-s + 0.182·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25410 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25410 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(25410\)    =    \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(202.899\)
Root analytic conductor: \(14.2442\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 25410,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 - T \)
11 \( 1 \)
good13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 8 T + p T^{2} \) 1.17.i
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 8 T + p T^{2} \) 1.53.ai
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.63582965784988, −15.09834772315309, −14.59013901044862, −13.87391736392243, −13.54521221536179, −12.95812090520885, −12.23155224271387, −11.84432429950181, −11.48679245557062, −10.90468940832192, −10.37322253731907, −9.651071435681733, −9.125568285532565, −8.234601222384262, −7.782771017122966, −7.043579841184724, −6.711589229692392, −5.928643392775678, −5.261762344474296, −4.842751076844666, −4.138922404144830, −3.665605369048777, −2.646723768927480, −2.070388658481342, −1.058560554453210, 0, 1.058560554453210, 2.070388658481342, 2.646723768927480, 3.665605369048777, 4.138922404144830, 4.842751076844666, 5.261762344474296, 5.928643392775678, 6.711589229692392, 7.043579841184724, 7.782771017122966, 8.234601222384262, 9.125568285532565, 9.651071435681733, 10.37322253731907, 10.90468940832192, 11.48679245557062, 11.84432429950181, 12.23155224271387, 12.95812090520885, 13.54521221536179, 13.87391736392243, 14.59013901044862, 15.09834772315309, 15.63582965784988

Graph of the $Z$-function along the critical line