Properties

Label 2-25350-1.1-c1-0-69
Degree $2$
Conductor $25350$
Sign $-1$
Analytic cond. $202.420$
Root an. cond. $14.2274$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s + 7-s − 8-s + 9-s + 3·11-s − 12-s − 14-s + 16-s − 17-s − 18-s + 8·19-s − 21-s − 3·22-s + 4·23-s + 24-s − 27-s + 28-s − 7·29-s − 31-s − 32-s − 3·33-s + 34-s + 36-s − 4·37-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.904·11-s − 0.288·12-s − 0.267·14-s + 1/4·16-s − 0.242·17-s − 0.235·18-s + 1.83·19-s − 0.218·21-s − 0.639·22-s + 0.834·23-s + 0.204·24-s − 0.192·27-s + 0.188·28-s − 1.29·29-s − 0.179·31-s − 0.176·32-s − 0.522·33-s + 0.171·34-s + 1/6·36-s − 0.657·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(25350\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(202.420\)
Root analytic conductor: \(14.2274\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 25350,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 \)
13 \( 1 \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
17 \( 1 + T + p T^{2} \) 1.17.b
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 7 T + p T^{2} \) 1.29.h
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 5 T + p T^{2} \) 1.53.af
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 7 T + p T^{2} \) 1.83.h
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.79128567292302, −15.09453618190712, −14.67188648963622, −14.13011204480372, −13.36231392284636, −12.94041494030004, −12.14001834615935, −11.62849345420527, −11.35678635083201, −10.87071867102931, −9.997463134694294, −9.681781341194593, −9.092128257861596, −8.521782588398079, −7.833472030783972, −7.152559819796156, −6.877842552376929, −6.119733746426954, −5.307121242485032, −5.081163119127009, −3.975508923983301, −3.461673604110862, −2.549640631458183, −1.531281759800074, −1.130965165453461, 0, 1.130965165453461, 1.531281759800074, 2.549640631458183, 3.461673604110862, 3.975508923983301, 5.081163119127009, 5.307121242485032, 6.119733746426954, 6.877842552376929, 7.152559819796156, 7.833472030783972, 8.521782588398079, 9.092128257861596, 9.681781341194593, 9.997463134694294, 10.87071867102931, 11.35678635083201, 11.62849345420527, 12.14001834615935, 12.94041494030004, 13.36231392284636, 14.13011204480372, 14.67188648963622, 15.09453618190712, 15.79128567292302

Graph of the $Z$-function along the critical line