Properties

Label 2-25200-1.1-c1-0-8
Degree $2$
Conductor $25200$
Sign $1$
Analytic cond. $201.223$
Root an. cond. $14.1853$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s − 6·11-s − 2·13-s + 4·19-s + 6·23-s − 6·29-s − 8·31-s − 2·37-s − 12·41-s − 4·43-s − 12·47-s + 49-s − 6·53-s − 10·61-s + 8·67-s + 6·71-s + 10·73-s − 6·77-s + 4·79-s + 12·83-s − 12·89-s − 2·91-s + 10·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 0.377·7-s − 1.80·11-s − 0.554·13-s + 0.917·19-s + 1.25·23-s − 1.11·29-s − 1.43·31-s − 0.328·37-s − 1.87·41-s − 0.609·43-s − 1.75·47-s + 1/7·49-s − 0.824·53-s − 1.28·61-s + 0.977·67-s + 0.712·71-s + 1.17·73-s − 0.683·77-s + 0.450·79-s + 1.31·83-s − 1.27·89-s − 0.209·91-s + 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(25200\)    =    \(2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(201.223\)
Root analytic conductor: \(14.1853\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 25200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.131074891\)
\(L(\frac12)\) \(\approx\) \(1.131074891\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
good11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.25298834907440, −14.98974060990906, −14.31809637296088, −13.66321134250261, −13.19050696306472, −12.75385972866214, −12.23609553612162, −11.33834387878580, −11.15039149162434, −10.48185303601025, −9.892836451133607, −9.416550840829398, −8.689641968093641, −8.071073146006815, −7.548800615508020, −7.163309634946928, −6.382717902206781, −5.438870083184775, −5.071082745380093, −4.806828470136640, −3.427717940532607, −3.250255660661502, −2.220828334974168, −1.655838393088589, −0.4034098469597023, 0.4034098469597023, 1.655838393088589, 2.220828334974168, 3.250255660661502, 3.427717940532607, 4.806828470136640, 5.071082745380093, 5.438870083184775, 6.382717902206781, 7.163309634946928, 7.548800615508020, 8.071073146006815, 8.689641968093641, 9.416550840829398, 9.892836451133607, 10.48185303601025, 11.15039149162434, 11.33834387878580, 12.23609553612162, 12.75385972866214, 13.19050696306472, 13.66321134250261, 14.31809637296088, 14.98974060990906, 15.25298834907440

Graph of the $Z$-function along the critical line