Properties

Label 2-24546-1.1-c1-0-5
Degree $2$
Conductor $24546$
Sign $-1$
Analytic cond. $196.000$
Root an. cond. $14.0000$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $3$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 3·5-s + 6-s − 5·7-s − 8-s + 9-s + 3·10-s − 5·11-s − 12-s − 6·13-s + 5·14-s + 3·15-s + 16-s − 4·17-s − 18-s − 6·19-s − 3·20-s + 5·21-s + 5·22-s − 9·23-s + 24-s + 4·25-s + 6·26-s − 27-s − 5·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 1.34·5-s + 0.408·6-s − 1.88·7-s − 0.353·8-s + 1/3·9-s + 0.948·10-s − 1.50·11-s − 0.288·12-s − 1.66·13-s + 1.33·14-s + 0.774·15-s + 1/4·16-s − 0.970·17-s − 0.235·18-s − 1.37·19-s − 0.670·20-s + 1.09·21-s + 1.06·22-s − 1.87·23-s + 0.204·24-s + 4/5·25-s + 1.17·26-s − 0.192·27-s − 0.944·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 24546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 24546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(24546\)    =    \(2 \cdot 3 \cdot 4091\)
Sign: $-1$
Analytic conductor: \(196.000\)
Root analytic conductor: \(14.0000\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(3\)
Selberg data: \((2,\ 24546,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
4091 \( 1 + T \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 + 5 T + p T^{2} \) 1.7.f
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 11 T + p T^{2} \) 1.61.l
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 - 13 T + p T^{2} \) 1.73.an
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.31528206139947, −15.67280215818628, −15.27765806666043, −15.13764688693100, −14.04077813169368, −13.21607344797135, −12.70678039238815, −12.43186175997173, −11.99957553692154, −11.12802351472510, −10.79347345852382, −10.08832008075510, −9.824393236399667, −9.136281439573843, −8.404230195222007, −7.775440278968898, −7.313595578356126, −6.865557401328231, −6.181236874744949, −5.581468262683396, −4.737631748021957, −4.009415906944245, −3.461691784247171, −2.526933557444731, −2.093900260196079, 0, 0, 0, 2.093900260196079, 2.526933557444731, 3.461691784247171, 4.009415906944245, 4.737631748021957, 5.581468262683396, 6.181236874744949, 6.865557401328231, 7.313595578356126, 7.775440278968898, 8.404230195222007, 9.136281439573843, 9.824393236399667, 10.08832008075510, 10.79347345852382, 11.12802351472510, 11.99957553692154, 12.43186175997173, 12.70678039238815, 13.21607344797135, 14.04077813169368, 15.13764688693100, 15.27765806666043, 15.67280215818628, 16.31528206139947

Graph of the $Z$-function along the critical line