Properties

Label 2-244800-1.1-c1-0-472
Degree $2$
Conductor $244800$
Sign $-1$
Analytic cond. $1954.73$
Root an. cond. $44.2124$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·7-s + 3·11-s + 4·13-s − 17-s + 19-s + 2·23-s − 5·29-s + 4·31-s + 5·37-s + 5·41-s + 2·43-s − 3·47-s + 2·49-s − 9·53-s + 4·59-s − 6·61-s − 14·67-s − 8·71-s − 11·73-s + 9·77-s − 12·79-s + 4·83-s − 12·89-s + 12·91-s − 6·97-s + 101-s + 103-s + ⋯
L(s)  = 1  + 1.13·7-s + 0.904·11-s + 1.10·13-s − 0.242·17-s + 0.229·19-s + 0.417·23-s − 0.928·29-s + 0.718·31-s + 0.821·37-s + 0.780·41-s + 0.304·43-s − 0.437·47-s + 2/7·49-s − 1.23·53-s + 0.520·59-s − 0.768·61-s − 1.71·67-s − 0.949·71-s − 1.28·73-s + 1.02·77-s − 1.35·79-s + 0.439·83-s − 1.27·89-s + 1.25·91-s − 0.609·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 244800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 244800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(244800\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(1954.73\)
Root analytic conductor: \(44.2124\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 244800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
17 \( 1 + T \)
good7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 5 T + p T^{2} \) 1.37.af
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.17867804979920, −12.71757915666830, −11.97723372685179, −11.67574317844527, −11.27756878267971, −10.88305394505859, −10.51795856138397, −9.697217857447790, −9.414100667423758, −8.764463713451177, −8.534421573882556, −7.966572293732734, −7.433337400145418, −7.081979549233699, −6.278111185190314, −6.010392569179652, −5.533022415086488, −4.687026919374861, −4.472458834645872, −3.947390032060561, −3.263932789912261, −2.768338932730122, −1.925082954929641, −1.367038637931201, −1.088820092426510, 0, 1.088820092426510, 1.367038637931201, 1.925082954929641, 2.768338932730122, 3.263932789912261, 3.947390032060561, 4.472458834645872, 4.687026919374861, 5.533022415086488, 6.010392569179652, 6.278111185190314, 7.081979549233699, 7.433337400145418, 7.966572293732734, 8.534421573882556, 8.764463713451177, 9.414100667423758, 9.697217857447790, 10.51795856138397, 10.88305394505859, 11.27756878267971, 11.67574317844527, 11.97723372685179, 12.71757915666830, 13.17867804979920

Graph of the $Z$-function along the critical line