Properties

Label 2-244800-1.1-c1-0-131
Degree $2$
Conductor $244800$
Sign $1$
Analytic cond. $1954.73$
Root an. cond. $44.2124$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s + 4·11-s − 3·13-s − 17-s + 6·19-s + 9·31-s − 4·37-s − 6·41-s + 12·43-s − 10·47-s − 6·49-s − 9·53-s + 14·61-s − 8·67-s − 15·71-s − 12·73-s + 4·77-s − 3·79-s + 6·89-s − 3·91-s + 16·97-s + 101-s + 103-s + 107-s + 109-s + 113-s − 119-s + ⋯
L(s)  = 1  + 0.377·7-s + 1.20·11-s − 0.832·13-s − 0.242·17-s + 1.37·19-s + 1.61·31-s − 0.657·37-s − 0.937·41-s + 1.82·43-s − 1.45·47-s − 6/7·49-s − 1.23·53-s + 1.79·61-s − 0.977·67-s − 1.78·71-s − 1.40·73-s + 0.455·77-s − 0.337·79-s + 0.635·89-s − 0.314·91-s + 1.62·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s − 0.0916·119-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 244800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 244800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(244800\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(1954.73\)
Root analytic conductor: \(44.2124\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 244800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.786686064\)
\(L(\frac12)\) \(\approx\) \(2.786686064\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
17 \( 1 + T \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 3 T + p T^{2} \) 1.13.d
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 9 T + p T^{2} \) 1.31.aj
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 15 T + p T^{2} \) 1.71.p
73 \( 1 + 12 T + p T^{2} \) 1.73.m
79 \( 1 + 3 T + p T^{2} \) 1.79.d
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.06455999853209, −12.19391965408722, −11.89555886993083, −11.57590937984836, −11.24701026261592, −10.42019613413077, −10.04696000672509, −9.695893802817072, −9.051496203927018, −8.822793646747319, −8.118733084945759, −7.688028499226695, −7.194633232967714, −6.752752748097942, −6.189253326686249, −5.775561156452698, −4.955947333686517, −4.750829768195853, −4.211767929426928, −3.447691108586903, −3.087657861391390, −2.414685075231066, −1.655504653937587, −1.243552095839899, −0.4747047111823004, 0.4747047111823004, 1.243552095839899, 1.655504653937587, 2.414685075231066, 3.087657861391390, 3.447691108586903, 4.211767929426928, 4.750829768195853, 4.955947333686517, 5.775561156452698, 6.189253326686249, 6.752752748097942, 7.194633232967714, 7.688028499226695, 8.118733084945759, 8.822793646747319, 9.051496203927018, 9.695893802817072, 10.04696000672509, 10.42019613413077, 11.24701026261592, 11.57590937984836, 11.89555886993083, 12.19391965408722, 13.06455999853209

Graph of the $Z$-function along the critical line