Properties

Label 244800.mx
Number of curves $1$
Conductor $244800$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("mx1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 244800.mx1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + 3 T + 13 T^{2}\) 1.13.d
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 244800.mx do not have complex multiplication.

Modular form 244800.2.a.mx

Copy content sage:E.q_eigenform(10)
 
\(q + q^{7} + 4 q^{11} - 3 q^{13} - q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 244800.mx

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
244800.mx1 244800mx1 \([0, 0, 0, 4500, 248400]\) \(84375/272\) \(-32487505920000\) \([]\) \(516096\) \(1.2758\) \(\Gamma_0(N)\)-optimal