Properties

Label 2-244800-1.1-c1-0-72
Degree $2$
Conductor $244800$
Sign $1$
Analytic cond. $1954.73$
Root an. cond. $44.2124$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s + 2·11-s − 6·13-s + 17-s − 8·19-s + 2·23-s + 6·29-s + 2·31-s + 6·37-s − 2·41-s + 4·43-s − 4·47-s − 3·49-s + 10·53-s + 10·61-s − 8·67-s + 14·71-s − 10·73-s − 4·77-s + 14·79-s − 4·83-s − 6·89-s + 12·91-s + 14·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 0.755·7-s + 0.603·11-s − 1.66·13-s + 0.242·17-s − 1.83·19-s + 0.417·23-s + 1.11·29-s + 0.359·31-s + 0.986·37-s − 0.312·41-s + 0.609·43-s − 0.583·47-s − 3/7·49-s + 1.37·53-s + 1.28·61-s − 0.977·67-s + 1.66·71-s − 1.17·73-s − 0.455·77-s + 1.57·79-s − 0.439·83-s − 0.635·89-s + 1.25·91-s + 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 244800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 244800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(244800\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(1954.73\)
Root analytic conductor: \(44.2124\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 244800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.475538681\)
\(L(\frac12)\) \(\approx\) \(1.475538681\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
17 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 6 T + p T^{2} \) 1.13.g
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 14 T + p T^{2} \) 1.71.ao
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.78378949226538, −12.41553089709123, −12.11661838229563, −11.48068500745774, −11.09815543141988, −10.36651135583100, −10.06709757806150, −9.746383737255077, −9.137780333054657, −8.720031612533249, −8.226135317594948, −7.656158835212401, −7.118647408221349, −6.630078465115385, −6.357025178892993, −5.782308545387255, −5.036434391819920, −4.665616654630861, −4.133523579098990, −3.607114643418423, −2.849290308753328, −2.474877883254237, −1.951621495048054, −1.006828258316027, −0.3716698287515472, 0.3716698287515472, 1.006828258316027, 1.951621495048054, 2.474877883254237, 2.849290308753328, 3.607114643418423, 4.133523579098990, 4.665616654630861, 5.036434391819920, 5.782308545387255, 6.357025178892993, 6.630078465115385, 7.118647408221349, 7.656158835212401, 8.226135317594948, 8.720031612533249, 9.137780333054657, 9.746383737255077, 10.06709757806150, 10.36651135583100, 11.09815543141988, 11.48068500745774, 12.11661838229563, 12.41553089709123, 12.78378949226538

Graph of the $Z$-function along the critical line