Properties

Label 2-23616-1.1-c1-0-42
Degree $2$
Conductor $23616$
Sign $-1$
Analytic cond. $188.574$
Root an. cond. $13.7322$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 2·7-s + 4·11-s − 4·13-s + 2·17-s − 4·23-s − 25-s + 4·31-s − 4·35-s − 2·37-s + 41-s + 12·43-s + 2·47-s − 3·49-s − 4·53-s − 8·55-s − 4·59-s − 10·61-s + 8·65-s + 8·67-s + 10·71-s − 2·73-s + 8·77-s − 14·79-s − 12·83-s − 4·85-s − 10·89-s + ⋯
L(s)  = 1  − 0.894·5-s + 0.755·7-s + 1.20·11-s − 1.10·13-s + 0.485·17-s − 0.834·23-s − 1/5·25-s + 0.718·31-s − 0.676·35-s − 0.328·37-s + 0.156·41-s + 1.82·43-s + 0.291·47-s − 3/7·49-s − 0.549·53-s − 1.07·55-s − 0.520·59-s − 1.28·61-s + 0.992·65-s + 0.977·67-s + 1.18·71-s − 0.234·73-s + 0.911·77-s − 1.57·79-s − 1.31·83-s − 0.433·85-s − 1.05·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 23616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(23616\)    =    \(2^{6} \cdot 3^{2} \cdot 41\)
Sign: $-1$
Analytic conductor: \(188.574\)
Root analytic conductor: \(13.7322\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 23616,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
41 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.59363152031767, −15.26221493711719, −14.49027276047166, −14.19145185576031, −13.89831516467990, −12.73009646283444, −12.41240609279747, −11.83360226425650, −11.52811634096447, −10.95526489291670, −10.21525287572609, −9.625655412733778, −9.133065394246374, −8.340403473479221, −7.910360942530712, −7.409028542963649, −6.837475201462582, −6.051229888002532, −5.448074444888099, −4.495981498165823, −4.315457898800630, −3.547961580225474, −2.730201592583852, −1.863184804045530, −1.066979681280962, 0, 1.066979681280962, 1.863184804045530, 2.730201592583852, 3.547961580225474, 4.315457898800630, 4.495981498165823, 5.448074444888099, 6.051229888002532, 6.837475201462582, 7.409028542963649, 7.910360942530712, 8.340403473479221, 9.133065394246374, 9.625655412733778, 10.21525287572609, 10.95526489291670, 11.52811634096447, 11.83360226425650, 12.41240609279747, 12.73009646283444, 13.89831516467990, 14.19145185576031, 14.49027276047166, 15.26221493711719, 15.59363152031767

Graph of the $Z$-function along the critical line