Properties

Label 2-235200-1.1-c1-0-630
Degree $2$
Conductor $235200$
Sign $-1$
Analytic cond. $1878.08$
Root an. cond. $43.3368$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s − 2·11-s + 2·13-s + 4·19-s − 6·23-s + 27-s + 10·29-s − 8·31-s − 2·33-s + 10·37-s + 2·39-s + 4·41-s + 8·43-s + 4·47-s + 10·53-s + 4·57-s − 8·59-s − 6·61-s − 4·67-s − 6·69-s − 14·71-s + 6·73-s − 4·79-s + 81-s − 12·83-s + 10·87-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s − 0.603·11-s + 0.554·13-s + 0.917·19-s − 1.25·23-s + 0.192·27-s + 1.85·29-s − 1.43·31-s − 0.348·33-s + 1.64·37-s + 0.320·39-s + 0.624·41-s + 1.21·43-s + 0.583·47-s + 1.37·53-s + 0.529·57-s − 1.04·59-s − 0.768·61-s − 0.488·67-s − 0.722·69-s − 1.66·71-s + 0.702·73-s − 0.450·79-s + 1/9·81-s − 1.31·83-s + 1.07·87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 235200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 235200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(235200\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(1878.08\)
Root analytic conductor: \(43.3368\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 235200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
good11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 14 T + p T^{2} \) 1.71.o
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.26114541233897, −12.73246360358583, −12.09031145122279, −12.00391913259449, −11.14182567095419, −10.85501225646600, −10.30080404360609, −9.867144457183262, −9.420399706955613, −8.850751969866307, −8.533358021796911, −7.842308368571788, −7.595220259359646, −7.175836707823771, −6.394637894330256, −5.913907716323804, −5.589405517225397, −4.847387130380978, −4.213446028856804, −3.985973582297433, −3.152145473355105, −2.722442253256916, −2.278903002271396, −1.415788342872208, −0.9417965102723276, 0, 0.9417965102723276, 1.415788342872208, 2.278903002271396, 2.722442253256916, 3.152145473355105, 3.985973582297433, 4.213446028856804, 4.847387130380978, 5.589405517225397, 5.913907716323804, 6.394637894330256, 7.175836707823771, 7.595220259359646, 7.842308368571788, 8.533358021796911, 8.850751969866307, 9.420399706955613, 9.867144457183262, 10.30080404360609, 10.85501225646600, 11.14182567095419, 12.00391913259449, 12.09031145122279, 12.73246360358583, 13.26114541233897

Graph of the $Z$-function along the critical line