Properties

Label 2-234432-1.1-c1-0-21
Degree $2$
Conductor $234432$
Sign $1$
Analytic cond. $1871.94$
Root an. cond. $43.2660$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s + 11-s − 4·13-s − 2·17-s − 2·19-s − 2·23-s − 5·25-s + 10·29-s + 8·31-s − 37-s + 6·41-s + 6·43-s − 4·47-s + 9·49-s − 6·53-s + 10·59-s + 12·67-s − 8·71-s + 10·73-s − 4·77-s − 2·79-s + 12·83-s − 12·89-s + 16·91-s + 2·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 1.51·7-s + 0.301·11-s − 1.10·13-s − 0.485·17-s − 0.458·19-s − 0.417·23-s − 25-s + 1.85·29-s + 1.43·31-s − 0.164·37-s + 0.937·41-s + 0.914·43-s − 0.583·47-s + 9/7·49-s − 0.824·53-s + 1.30·59-s + 1.46·67-s − 0.949·71-s + 1.17·73-s − 0.455·77-s − 0.225·79-s + 1.31·83-s − 1.27·89-s + 1.67·91-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 234432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234432 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(234432\)    =    \(2^{6} \cdot 3^{2} \cdot 11 \cdot 37\)
Sign: $1$
Analytic conductor: \(1871.94\)
Root analytic conductor: \(43.2660\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 234432,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.480405732\)
\(L(\frac12)\) \(\approx\) \(1.480405732\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 - T \)
37 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.01127400674686, −12.36746726440377, −12.11165991539146, −11.66734660280686, −11.04792026379873, −10.44202171677114, −9.953141360793174, −9.788722889028592, −9.316786016255081, −8.707920948221728, −8.234588864378056, −7.717476364140860, −7.117816897421840, −6.605930436606107, −6.324071388039762, −5.909133076353155, −5.139608679706716, −4.587320071719526, −4.141972328815826, −3.569009672086189, −2.911308731519532, −2.496303590542869, −2.006033554633727, −0.9151392733442861, −0.4022196572235084, 0.4022196572235084, 0.9151392733442861, 2.006033554633727, 2.496303590542869, 2.911308731519532, 3.569009672086189, 4.141972328815826, 4.587320071719526, 5.139608679706716, 5.909133076353155, 6.324071388039762, 6.605930436606107, 7.117816897421840, 7.717476364140860, 8.234588864378056, 8.707920948221728, 9.316786016255081, 9.788722889028592, 9.953141360793174, 10.44202171677114, 11.04792026379873, 11.66734660280686, 12.11165991539146, 12.36746726440377, 13.01127400674686

Graph of the $Z$-function along the critical line