Properties

Label 2-234135-1.1-c1-0-29
Degree $2$
Conductor $234135$
Sign $-1$
Analytic cond. $1869.57$
Root an. cond. $43.2386$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 5-s + 2·7-s + 13-s + 4·16-s − 3·17-s + 2·19-s − 2·20-s + 23-s + 25-s − 4·28-s + 4·29-s + 3·31-s + 2·35-s − 8·37-s + 5·41-s + 43-s − 3·49-s − 2·52-s + 5·53-s − 12·59-s + 4·61-s − 8·64-s + 65-s − 3·67-s + 6·68-s − 6·71-s + ⋯
L(s)  = 1  − 4-s + 0.447·5-s + 0.755·7-s + 0.277·13-s + 16-s − 0.727·17-s + 0.458·19-s − 0.447·20-s + 0.208·23-s + 1/5·25-s − 0.755·28-s + 0.742·29-s + 0.538·31-s + 0.338·35-s − 1.31·37-s + 0.780·41-s + 0.152·43-s − 3/7·49-s − 0.277·52-s + 0.686·53-s − 1.56·59-s + 0.512·61-s − 64-s + 0.124·65-s − 0.366·67-s + 0.727·68-s − 0.712·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 234135 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234135 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(234135\)    =    \(3^{2} \cdot 5 \cdot 11^{2} \cdot 43\)
Sign: $-1$
Analytic conductor: \(1869.57\)
Root analytic conductor: \(43.2386\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 234135,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 - T \)
11 \( 1 \)
43 \( 1 - T \)
good2 \( 1 + p T^{2} \) 1.2.a
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 5 T + p T^{2} \) 1.41.af
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 5 T + p T^{2} \) 1.53.af
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 17 T + p T^{2} \) 1.97.r
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.20371966591168, −12.78153762608746, −12.18453261746942, −11.89888749108083, −11.20291305090345, −10.77223547680512, −10.37945138988649, −9.831002186286389, −9.357540977431775, −8.917791264098852, −8.539523512359338, −8.034713165427282, −7.648341702827530, −6.893721425067567, −6.511683624147774, −5.817423599541812, −5.339805969465335, −4.993648314409139, −4.285490521040319, −4.161559206294653, −3.216350664270939, −2.834864350744665, −1.985032893424278, −1.415227007169979, −0.8466874714664820, 0, 0.8466874714664820, 1.415227007169979, 1.985032893424278, 2.834864350744665, 3.216350664270939, 4.161559206294653, 4.285490521040319, 4.993648314409139, 5.339805969465335, 5.817423599541812, 6.511683624147774, 6.893721425067567, 7.648341702827530, 8.034713165427282, 8.539523512359338, 8.917791264098852, 9.357540977431775, 9.831002186286389, 10.37945138988649, 10.77223547680512, 11.20291305090345, 11.89888749108083, 12.18453261746942, 12.78153762608746, 13.20371966591168

Graph of the $Z$-function along the critical line