Properties

Label 2-23120-1.1-c1-0-19
Degree $2$
Conductor $23120$
Sign $1$
Analytic cond. $184.614$
Root an. cond. $13.5872$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 5-s + 4·7-s + 6·9-s − 2·11-s + 13-s − 3·15-s + 7·19-s + 12·21-s + 6·23-s + 25-s + 9·27-s − 3·29-s − 7·31-s − 6·33-s − 4·35-s − 2·37-s + 3·39-s + 8·41-s − 8·43-s − 6·45-s − 9·47-s + 9·49-s + 11·53-s + 2·55-s + 21·57-s − 5·59-s + ⋯
L(s)  = 1  + 1.73·3-s − 0.447·5-s + 1.51·7-s + 2·9-s − 0.603·11-s + 0.277·13-s − 0.774·15-s + 1.60·19-s + 2.61·21-s + 1.25·23-s + 1/5·25-s + 1.73·27-s − 0.557·29-s − 1.25·31-s − 1.04·33-s − 0.676·35-s − 0.328·37-s + 0.480·39-s + 1.24·41-s − 1.21·43-s − 0.894·45-s − 1.31·47-s + 9/7·49-s + 1.51·53-s + 0.269·55-s + 2.78·57-s − 0.650·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 23120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(23120\)    =    \(2^{4} \cdot 5 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(184.614\)
Root analytic conductor: \(13.5872\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 23120,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.890879764\)
\(L(\frac12)\) \(\approx\) \(5.890879764\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
17 \( 1 \)
good3 \( 1 - p T + p T^{2} \) 1.3.ad
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - T + p T^{2} \) 1.13.ab
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 - 11 T + p T^{2} \) 1.53.al
59 \( 1 + 5 T + p T^{2} \) 1.59.f
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + T + p T^{2} \) 1.89.b
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.29754532908618, −14.90518942949716, −14.33965003141404, −14.08476234310231, −13.37039359378399, −13.01309687832236, −12.34258674377766, −11.46605886598766, −11.22795266834882, −10.52438295800943, −9.802631034408140, −9.196984045251210, −8.756075071483330, −8.190090984626307, −7.662885793948290, −7.453791292262354, −6.751500165563171, −5.435315833906167, −5.089617872381992, −4.370126144445224, −3.559415549445462, −3.199039965540034, −2.325925246861903, −1.700993199235205, −0.9428690515472716, 0.9428690515472716, 1.700993199235205, 2.325925246861903, 3.199039965540034, 3.559415549445462, 4.370126144445224, 5.089617872381992, 5.435315833906167, 6.751500165563171, 7.453791292262354, 7.662885793948290, 8.190090984626307, 8.756075071483330, 9.196984045251210, 9.802631034408140, 10.52438295800943, 11.22795266834882, 11.46605886598766, 12.34258674377766, 13.01309687832236, 13.37039359378399, 14.08476234310231, 14.33965003141404, 14.90518942949716, 15.29754532908618

Graph of the $Z$-function along the critical line