Properties

Label 2-228888-1.1-c1-0-63
Degree $2$
Conductor $228888$
Sign $1$
Analytic cond. $1827.67$
Root an. cond. $42.7513$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s − 11-s − 6·13-s − 2·19-s − 8·23-s − 5·25-s − 2·29-s + 4·31-s − 2·37-s + 10·41-s − 6·43-s − 4·47-s − 3·49-s + 4·53-s + 4·59-s + 2·61-s − 8·67-s − 12·71-s + 2·73-s − 2·77-s − 14·79-s − 4·83-s − 12·91-s − 2·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  + 0.755·7-s − 0.301·11-s − 1.66·13-s − 0.458·19-s − 1.66·23-s − 25-s − 0.371·29-s + 0.718·31-s − 0.328·37-s + 1.56·41-s − 0.914·43-s − 0.583·47-s − 3/7·49-s + 0.549·53-s + 0.520·59-s + 0.256·61-s − 0.977·67-s − 1.42·71-s + 0.234·73-s − 0.227·77-s − 1.57·79-s − 0.439·83-s − 1.25·91-s − 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 228888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 228888 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(228888\)    =    \(2^{3} \cdot 3^{2} \cdot 11 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(1827.67\)
Root analytic conductor: \(42.7513\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 228888,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + T \)
17 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 + 6 T + p T^{2} \) 1.13.g
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.30035073768886, −13.02530088004361, −12.21131084958655, −12.13096114918851, −11.57363165169232, −11.21000692016095, −10.45058759095247, −10.19550132766251, −9.652317218742348, −9.396730947304498, −8.464407743236974, −8.267614751039379, −7.729212426323570, −7.332423453487955, −6.865723460122552, −6.061030393882544, −5.784841357793176, −5.138900147320657, −4.656929087772220, −4.212966452667671, −3.728997147959773, −2.787600804551188, −2.434762397206341, −1.854351060320906, −1.289070033546151, 0, 0, 1.289070033546151, 1.854351060320906, 2.434762397206341, 2.787600804551188, 3.728997147959773, 4.212966452667671, 4.656929087772220, 5.138900147320657, 5.784841357793176, 6.061030393882544, 6.865723460122552, 7.332423453487955, 7.729212426323570, 8.267614751039379, 8.464407743236974, 9.396730947304498, 9.652317218742348, 10.19550132766251, 10.45058759095247, 11.21000692016095, 11.57363165169232, 12.13096114918851, 12.21131084958655, 13.02530088004361, 13.30035073768886

Graph of the $Z$-function along the critical line