Properties

Label 2-225420-1.1-c1-0-10
Degree $2$
Conductor $225420$
Sign $1$
Analytic cond. $1799.98$
Root an. cond. $42.4262$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 2·7-s + 9-s − 11-s − 13-s − 15-s + 19-s − 2·21-s + 23-s + 25-s − 27-s − 29-s − 11·31-s + 33-s + 2·35-s + 3·37-s + 39-s + 2·41-s + 43-s + 45-s + 2·47-s − 3·49-s + 6·53-s − 55-s − 57-s + 8·59-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 0.755·7-s + 1/3·9-s − 0.301·11-s − 0.277·13-s − 0.258·15-s + 0.229·19-s − 0.436·21-s + 0.208·23-s + 1/5·25-s − 0.192·27-s − 0.185·29-s − 1.97·31-s + 0.174·33-s + 0.338·35-s + 0.493·37-s + 0.160·39-s + 0.312·41-s + 0.152·43-s + 0.149·45-s + 0.291·47-s − 3/7·49-s + 0.824·53-s − 0.134·55-s − 0.132·57-s + 1.04·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225420 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(225420\)    =    \(2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(1799.98\)
Root analytic conductor: \(42.4262\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 225420,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.330439171\)
\(L(\frac12)\) \(\approx\) \(2.330439171\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
13 \( 1 + T \)
17 \( 1 \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + T + p T^{2} \) 1.11.b
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 + 11 T + p T^{2} \) 1.31.l
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.87256164272092, −12.70427468054845, −11.77523642309265, −11.63364871558040, −11.08921874035498, −10.69367344972301, −10.22740637939697, −9.681844953337194, −9.319647621823472, −8.665413786800395, −8.301132945003577, −7.609484293965651, −7.198880438442945, −6.889730273586107, −6.032373946897017, −5.713674781702416, −5.232250359946149, −4.840891218687639, −4.204740486403766, −3.677601888173210, −2.989929938905520, −2.197923512632126, −1.897764495901657, −1.104514067237730, −0.4739257823892758, 0.4739257823892758, 1.104514067237730, 1.897764495901657, 2.197923512632126, 2.989929938905520, 3.677601888173210, 4.204740486403766, 4.840891218687639, 5.232250359946149, 5.713674781702416, 6.032373946897017, 6.889730273586107, 7.198880438442945, 7.609484293965651, 8.301132945003577, 8.665413786800395, 9.319647621823472, 9.681844953337194, 10.22740637939697, 10.69367344972301, 11.08921874035498, 11.63364871558040, 11.77523642309265, 12.70427468054845, 12.87256164272092

Graph of the $Z$-function along the critical line