Properties

Label 2-221760-1.1-c1-0-142
Degree $2$
Conductor $221760$
Sign $1$
Analytic cond. $1770.76$
Root an. cond. $42.0804$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 7-s − 11-s + 4·13-s − 7·17-s − 5·19-s + 9·23-s + 25-s + 9·29-s − 2·31-s + 35-s − 2·37-s + 12·41-s + 9·43-s − 2·47-s + 49-s + 5·53-s − 55-s − 59-s + 7·61-s + 4·65-s + 2·67-s − 4·71-s + 14·73-s − 77-s − 12·79-s + 5·83-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.377·7-s − 0.301·11-s + 1.10·13-s − 1.69·17-s − 1.14·19-s + 1.87·23-s + 1/5·25-s + 1.67·29-s − 0.359·31-s + 0.169·35-s − 0.328·37-s + 1.87·41-s + 1.37·43-s − 0.291·47-s + 1/7·49-s + 0.686·53-s − 0.134·55-s − 0.130·59-s + 0.896·61-s + 0.496·65-s + 0.244·67-s − 0.474·71-s + 1.63·73-s − 0.113·77-s − 1.35·79-s + 0.548·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 221760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 221760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(221760\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(1770.76\)
Root analytic conductor: \(42.0804\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 221760,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.796093134\)
\(L(\frac12)\) \(\approx\) \(3.796093134\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 - T \)
11 \( 1 + T \)
good13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 - 9 T + p T^{2} \) 1.43.aj
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 5 T + p T^{2} \) 1.53.af
59 \( 1 + T + p T^{2} \) 1.59.b
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 5 T + p T^{2} \) 1.83.af
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.10278984400708, −12.70871333543543, −12.05958041492373, −11.34199654917277, −11.06995191121434, −10.64834302129241, −10.45194083417571, −9.564654581588221, −9.108833942885472, −8.669259782162783, −8.496496455195359, −7.804335013208885, −7.070860820606018, −6.811399226044048, −6.177676970815978, −5.898241955046681, −5.126627987927550, −4.653543193532074, −4.264869878912043, −3.656564035967594, −2.841830258839541, −2.429092700957162, −1.912918498554688, −1.051522369417850, −0.6152631406874672, 0.6152631406874672, 1.051522369417850, 1.912918498554688, 2.429092700957162, 2.841830258839541, 3.656564035967594, 4.264869878912043, 4.653543193532074, 5.126627987927550, 5.898241955046681, 6.177676970815978, 6.811399226044048, 7.070860820606018, 7.804335013208885, 8.496496455195359, 8.669259782162783, 9.108833942885472, 9.564654581588221, 10.45194083417571, 10.64834302129241, 11.06995191121434, 11.34199654917277, 12.05958041492373, 12.70871333543543, 13.10278984400708

Graph of the $Z$-function along the critical line