Properties

Label 2-216384-1.1-c1-0-28
Degree $2$
Conductor $216384$
Sign $1$
Analytic cond. $1727.83$
Root an. cond. $41.5672$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s + 4·11-s − 6·13-s − 4·17-s − 2·19-s + 23-s − 5·25-s − 27-s − 2·29-s + 4·31-s − 4·33-s − 2·37-s + 6·39-s − 2·41-s + 10·43-s + 4·51-s + 12·53-s + 2·57-s + 12·59-s − 6·61-s − 10·67-s − 69-s − 8·71-s + 14·73-s + 5·75-s − 10·79-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s + 1.20·11-s − 1.66·13-s − 0.970·17-s − 0.458·19-s + 0.208·23-s − 25-s − 0.192·27-s − 0.371·29-s + 0.718·31-s − 0.696·33-s − 0.328·37-s + 0.960·39-s − 0.312·41-s + 1.52·43-s + 0.560·51-s + 1.64·53-s + 0.264·57-s + 1.56·59-s − 0.768·61-s − 1.22·67-s − 0.120·69-s − 0.949·71-s + 1.63·73-s + 0.577·75-s − 1.12·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 216384 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216384 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(216384\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(1727.83\)
Root analytic conductor: \(41.5672\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 216384,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.285988330\)
\(L(\frac12)\) \(\approx\) \(1.285988330\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
23 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 2 T + p T^{2} \) 1.19.c
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.92375528971627, −12.41712089678371, −11.94812266115691, −11.70067131564559, −11.26390533473448, −10.62652757639114, −10.16519268520743, −9.795471949935833, −9.206761774452191, −8.878330793404986, −8.327863886929912, −7.523192483272200, −7.248427238090721, −6.817782923125126, −6.206625128549343, −5.843728521407886, −5.212264604649000, −4.598395633128568, −4.279856452755583, −3.782505998032915, −2.989965583912603, −2.214576904799765, −1.983533452484873, −1.030033848636185, −0.3647971740408150, 0.3647971740408150, 1.030033848636185, 1.983533452484873, 2.214576904799765, 2.989965583912603, 3.782505998032915, 4.279856452755583, 4.598395633128568, 5.212264604649000, 5.843728521407886, 6.206625128549343, 6.817782923125126, 7.248427238090721, 7.523192483272200, 8.327863886929912, 8.878330793404986, 9.206761774452191, 9.795471949935833, 10.16519268520743, 10.62652757639114, 11.26390533473448, 11.70067131564559, 11.94812266115691, 12.41712089678371, 12.92375528971627

Graph of the $Z$-function along the critical line