Properties

Label 2-215600-1.1-c1-0-22
Degree $2$
Conductor $215600$
Sign $1$
Analytic cond. $1721.57$
Root an. cond. $41.4918$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 9-s − 11-s + 13-s − 2·17-s − 8·19-s − 6·23-s − 4·27-s + 2·29-s + 7·31-s − 2·33-s + 8·37-s + 2·39-s − 8·41-s − 3·43-s − 12·47-s − 4·51-s + 10·53-s − 16·57-s + 3·59-s − 6·61-s + 4·67-s − 12·69-s − 71-s − 13·73-s − 4·79-s − 11·81-s + ⋯
L(s)  = 1  + 1.15·3-s + 1/3·9-s − 0.301·11-s + 0.277·13-s − 0.485·17-s − 1.83·19-s − 1.25·23-s − 0.769·27-s + 0.371·29-s + 1.25·31-s − 0.348·33-s + 1.31·37-s + 0.320·39-s − 1.24·41-s − 0.457·43-s − 1.75·47-s − 0.560·51-s + 1.37·53-s − 2.11·57-s + 0.390·59-s − 0.768·61-s + 0.488·67-s − 1.44·69-s − 0.118·71-s − 1.52·73-s − 0.450·79-s − 1.22·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 215600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 215600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(215600\)    =    \(2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(1721.57\)
Root analytic conductor: \(41.4918\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 215600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.535317773\)
\(L(\frac12)\) \(\approx\) \(1.535317773\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + 3 T + p T^{2} \) 1.43.d
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + T + p T^{2} \) 1.71.b
73 \( 1 + 13 T + p T^{2} \) 1.73.n
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 + T + p T^{2} \) 1.89.b
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.26626115496501, −12.68372812400501, −11.97991959989535, −11.71115383585027, −11.08960255238418, −10.57391363384742, −10.02109131278628, −9.824319310657011, −9.091793732650616, −8.578326717576856, −8.320148352358227, −8.034812612904029, −7.416738083848257, −6.676586910540551, −6.371553157635613, −5.877316811041724, −5.157269172263110, −4.407231955068986, −4.220767048447707, −3.542249780209813, −2.948263439530645, −2.434841661959864, −2.009812996842815, −1.378713512858220, −0.2972557225891795, 0.2972557225891795, 1.378713512858220, 2.009812996842815, 2.434841661959864, 2.948263439530645, 3.542249780209813, 4.220767048447707, 4.407231955068986, 5.157269172263110, 5.877316811041724, 6.371553157635613, 6.676586910540551, 7.416738083848257, 8.034812612904029, 8.320148352358227, 8.578326717576856, 9.091793732650616, 9.824319310657011, 10.02109131278628, 10.57391363384742, 11.08960255238418, 11.71115383585027, 11.97991959989535, 12.68372812400501, 13.26626115496501

Graph of the $Z$-function along the critical line