Properties

Label 2-462e2-1.1-c1-0-44
Degree $2$
Conductor $213444$
Sign $-1$
Analytic cond. $1704.35$
Root an. cond. $41.2838$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s − 4·13-s − 6·17-s + 8·19-s + 3·23-s + 4·25-s − 5·31-s − 37-s + 10·43-s + 6·53-s + 3·59-s − 4·61-s + 12·65-s − 67-s − 15·71-s − 4·73-s − 2·79-s − 6·83-s + 18·85-s − 9·89-s − 24·95-s + 7·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 1.34·5-s − 1.10·13-s − 1.45·17-s + 1.83·19-s + 0.625·23-s + 4/5·25-s − 0.898·31-s − 0.164·37-s + 1.52·43-s + 0.824·53-s + 0.390·59-s − 0.512·61-s + 1.48·65-s − 0.122·67-s − 1.78·71-s − 0.468·73-s − 0.225·79-s − 0.658·83-s + 1.95·85-s − 0.953·89-s − 2.46·95-s + 0.710·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 213444 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 213444 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(213444\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(1704.35\)
Root analytic conductor: \(41.2838\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 213444,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 + T + p T^{2} \) 1.67.b
71 \( 1 + 15 T + p T^{2} \) 1.71.p
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.14849111991631, −12.70884596551652, −12.18777528315213, −11.83745898424101, −11.42525766765137, −11.00443463309808, −10.58918980605246, −9.871835587650902, −9.461234976730739, −8.936326311351367, −8.581794767580622, −7.875508760445789, −7.466452012453714, −7.086074474802742, −6.891688763065918, −5.830751905403143, −5.540167929214323, −4.775878236470699, −4.453696909575306, −3.961941476717069, −3.278919323974661, −2.849921005280947, −2.241858969125582, −1.409094326629193, −0.6255365856658552, 0, 0.6255365856658552, 1.409094326629193, 2.241858969125582, 2.849921005280947, 3.278919323974661, 3.961941476717069, 4.453696909575306, 4.775878236470699, 5.540167929214323, 5.830751905403143, 6.891688763065918, 7.086074474802742, 7.466452012453714, 7.875508760445789, 8.581794767580622, 8.936326311351367, 9.461234976730739, 9.871835587650902, 10.58918980605246, 11.00443463309808, 11.42525766765137, 11.83745898424101, 12.18777528315213, 12.70884596551652, 13.14849111991631

Graph of the $Z$-function along the critical line