Properties

Label 2-213282-1.1-c1-0-34
Degree $2$
Conductor $213282$
Sign $-1$
Analytic cond. $1703.06$
Root an. cond. $41.2682$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·5-s − 2·7-s + 8-s − 2·10-s + 4·11-s + 4·13-s − 2·14-s + 16-s − 2·20-s + 4·22-s + 4·23-s − 25-s + 4·26-s − 2·28-s − 4·31-s + 32-s + 4·35-s − 2·37-s − 2·40-s − 41-s − 12·43-s + 4·44-s + 4·46-s + 2·47-s − 3·49-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.894·5-s − 0.755·7-s + 0.353·8-s − 0.632·10-s + 1.20·11-s + 1.10·13-s − 0.534·14-s + 1/4·16-s − 0.447·20-s + 0.852·22-s + 0.834·23-s − 1/5·25-s + 0.784·26-s − 0.377·28-s − 0.718·31-s + 0.176·32-s + 0.676·35-s − 0.328·37-s − 0.316·40-s − 0.156·41-s − 1.82·43-s + 0.603·44-s + 0.589·46-s + 0.291·47-s − 3/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 213282 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 213282 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(213282\)    =    \(2 \cdot 3^{2} \cdot 17^{2} \cdot 41\)
Sign: $-1$
Analytic conductor: \(1703.06\)
Root analytic conductor: \(41.2682\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 213282,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
17 \( 1 \)
41 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 2 T + p T^{2} \) 1.37.c
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.09790878277820, −12.97091191585084, −12.12673332828955, −11.92438477882185, −11.55796677028303, −10.97303747736604, −10.64549241481906, −10.01168116993300, −9.415316940409772, −8.968448996347875, −8.541178161209212, −7.986565473686541, −7.355741270379129, −6.953731925173168, −6.473796464505379, −6.079223729820337, −5.557191518047780, −4.791729194447321, −4.401805634785400, −3.720233653070193, −3.399257205090486, −3.189003443784965, −2.132389223997818, −1.530885667035695, −0.8635468570967088, 0, 0.8635468570967088, 1.530885667035695, 2.132389223997818, 3.189003443784965, 3.399257205090486, 3.720233653070193, 4.401805634785400, 4.791729194447321, 5.557191518047780, 6.079223729820337, 6.473796464505379, 6.953731925173168, 7.355741270379129, 7.986565473686541, 8.541178161209212, 8.968448996347875, 9.415316940409772, 10.01168116993300, 10.64549241481906, 10.97303747736604, 11.55796677028303, 11.92438477882185, 12.12673332828955, 12.97091191585084, 13.09790878277820

Graph of the $Z$-function along the critical line