Properties

Label 2-21312-1.1-c1-0-30
Degree $2$
Conductor $21312$
Sign $-1$
Analytic cond. $170.177$
Root an. cond. $13.0451$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 3·7-s − 5·11-s + 3·13-s + 3·17-s − 5·19-s + 3·23-s − 25-s + 4·31-s + 6·35-s − 37-s + 6·41-s − 4·43-s − 4·47-s + 2·49-s + 3·53-s + 10·55-s − 14·59-s + 14·61-s − 6·65-s − 12·67-s + 12·71-s + 13·73-s + 15·77-s + 6·79-s + 7·83-s − 6·85-s + ⋯
L(s)  = 1  − 0.894·5-s − 1.13·7-s − 1.50·11-s + 0.832·13-s + 0.727·17-s − 1.14·19-s + 0.625·23-s − 1/5·25-s + 0.718·31-s + 1.01·35-s − 0.164·37-s + 0.937·41-s − 0.609·43-s − 0.583·47-s + 2/7·49-s + 0.412·53-s + 1.34·55-s − 1.82·59-s + 1.79·61-s − 0.744·65-s − 1.46·67-s + 1.42·71-s + 1.52·73-s + 1.70·77-s + 0.675·79-s + 0.768·83-s − 0.650·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(21312\)    =    \(2^{6} \cdot 3^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(170.177\)
Root analytic conductor: \(13.0451\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 21312,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
37 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 13 T + p T^{2} \) 1.73.an
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 - 7 T + p T^{2} \) 1.83.ah
89 \( 1 + T + p T^{2} \) 1.89.b
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.79428238124625, −15.36280081406218, −15.06282609272790, −14.19149097098898, −13.44166000599401, −13.20701306926739, −12.45236622057275, −12.32269983957633, −11.32296203944084, −10.94099682151727, −10.36023768675403, −9.838358326552860, −9.196071167657247, −8.380894260384363, −8.066987853340818, −7.480430679252932, −6.713051456207336, −6.224622235136119, −5.530148446990555, −4.825762917023059, −4.067636444563722, −3.409895319686237, −2.933887084555361, −2.088618502165905, −0.8012294822314576, 0, 0.8012294822314576, 2.088618502165905, 2.933887084555361, 3.409895319686237, 4.067636444563722, 4.825762917023059, 5.530148446990555, 6.224622235136119, 6.713051456207336, 7.480430679252932, 8.066987853340818, 8.380894260384363, 9.196071167657247, 9.838358326552860, 10.36023768675403, 10.94099682151727, 11.32296203944084, 12.32269983957633, 12.45236622057275, 13.20701306926739, 13.44166000599401, 14.19149097098898, 15.06282609272790, 15.36280081406218, 15.79428238124625

Graph of the $Z$-function along the critical line