Properties

Label 2-210210-1.1-c1-0-102
Degree $2$
Conductor $210210$
Sign $-1$
Analytic cond. $1678.53$
Root an. cond. $40.9699$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 5-s − 6-s + 8-s + 9-s + 10-s + 11-s − 12-s − 13-s − 15-s + 16-s + 6·17-s + 18-s + 4·19-s + 20-s + 22-s − 4·23-s − 24-s + 25-s − 26-s − 27-s − 4·29-s − 30-s − 2·31-s + 32-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s + 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.301·11-s − 0.288·12-s − 0.277·13-s − 0.258·15-s + 1/4·16-s + 1.45·17-s + 0.235·18-s + 0.917·19-s + 0.223·20-s + 0.213·22-s − 0.834·23-s − 0.204·24-s + 1/5·25-s − 0.196·26-s − 0.192·27-s − 0.742·29-s − 0.182·30-s − 0.359·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 210210 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 210210 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(210210\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 11 \cdot 13\)
Sign: $-1$
Analytic conductor: \(1678.53\)
Root analytic conductor: \(40.9699\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 210210,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 \)
11 \( 1 - T \)
13 \( 1 + T \)
good17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.25226347223480, −12.75497434965405, −12.20413756698703, −11.89101414784218, −11.68467592633531, −10.88158829228970, −10.55243631217614, −9.926426823917093, −9.756238557083473, −9.100287219390586, −8.515887982278393, −7.732608133999368, −7.527098206449147, −6.964786810013763, −6.329142798700608, −5.963080963025938, −5.462533530663844, −5.047957972613366, −4.636621296576931, −3.782508207463108, −3.411691288053931, −2.960861684644654, −1.938984524383624, −1.675360362088727, −0.9233973144518872, 0, 0.9233973144518872, 1.675360362088727, 1.938984524383624, 2.960861684644654, 3.411691288053931, 3.782508207463108, 4.636621296576931, 5.047957972613366, 5.462533530663844, 5.963080963025938, 6.329142798700608, 6.964786810013763, 7.527098206449147, 7.732608133999368, 8.515887982278393, 9.100287219390586, 9.756238557083473, 9.926426823917093, 10.55243631217614, 10.88158829228970, 11.68467592633531, 11.89101414784218, 12.20413756698703, 12.75497434965405, 13.25226347223480

Graph of the $Z$-function along the critical line