Properties

Label 2-208080-1.1-c1-0-155
Degree $2$
Conductor $208080$
Sign $-1$
Analytic cond. $1661.52$
Root an. cond. $40.7618$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 3·7-s + 3·11-s + 4·13-s + 19-s + 2·23-s + 25-s + 5·29-s + 4·31-s + 3·35-s − 5·37-s + 5·41-s − 2·43-s + 3·47-s + 2·49-s + 9·53-s − 3·55-s − 4·59-s − 6·61-s − 4·65-s + 14·67-s + 8·71-s − 11·73-s − 9·77-s − 12·79-s + 4·83-s + 12·89-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.13·7-s + 0.904·11-s + 1.10·13-s + 0.229·19-s + 0.417·23-s + 1/5·25-s + 0.928·29-s + 0.718·31-s + 0.507·35-s − 0.821·37-s + 0.780·41-s − 0.304·43-s + 0.437·47-s + 2/7·49-s + 1.23·53-s − 0.404·55-s − 0.520·59-s − 0.768·61-s − 0.496·65-s + 1.71·67-s + 0.949·71-s − 1.28·73-s − 1.02·77-s − 1.35·79-s + 0.439·83-s + 1.27·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 208080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 208080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(208080\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(1661.52\)
Root analytic conductor: \(40.7618\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 208080,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
17 \( 1 \)
good7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 5 T + p T^{2} \) 1.37.f
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.23174764491935, −12.76760438057842, −12.34662844273879, −11.77768034971600, −11.58288448162258, −10.81035814191328, −10.56215509614756, −9.901599779384720, −9.519450724740815, −8.971880621082666, −8.565736228866737, −8.206899544397020, −7.366460712494174, −7.055659844401003, −6.427085955717080, −6.207154111315928, −5.643633352117625, −4.879170581731499, −4.384428163939062, −3.663586626078776, −3.524526828079582, −2.857258889103047, −2.233474662013498, −1.231965334464109, −0.9137242620952247, 0, 0.9137242620952247, 1.231965334464109, 2.233474662013498, 2.857258889103047, 3.524526828079582, 3.663586626078776, 4.384428163939062, 4.879170581731499, 5.643633352117625, 6.207154111315928, 6.427085955717080, 7.055659844401003, 7.366460712494174, 8.206899544397020, 8.565736228866737, 8.971880621082666, 9.519450724740815, 9.901599779384720, 10.56215509614756, 10.81035814191328, 11.58288448162258, 11.77768034971600, 12.34662844273879, 12.76760438057842, 13.23174764491935

Graph of the $Z$-function along the critical line