Properties

Label 2-20800-1.1-c1-0-80
Degree $2$
Conductor $20800$
Sign $-1$
Analytic cond. $166.088$
Root an. cond. $12.8875$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·9-s + 4·11-s − 13-s + 6·17-s − 4·19-s + 2·29-s − 4·31-s − 6·37-s − 6·41-s + 8·43-s − 7·49-s + 2·53-s − 4·59-s + 10·61-s + 12·67-s − 4·71-s − 14·73-s − 16·79-s + 9·81-s + 12·83-s + 2·89-s + 2·97-s − 12·99-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  − 9-s + 1.20·11-s − 0.277·13-s + 1.45·17-s − 0.917·19-s + 0.371·29-s − 0.718·31-s − 0.986·37-s − 0.937·41-s + 1.21·43-s − 49-s + 0.274·53-s − 0.520·59-s + 1.28·61-s + 1.46·67-s − 0.474·71-s − 1.63·73-s − 1.80·79-s + 81-s + 1.31·83-s + 0.211·89-s + 0.203·97-s − 1.20·99-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 20800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 20800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(20800\)    =    \(2^{6} \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(166.088\)
Root analytic conductor: \(12.8875\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 20800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
13 \( 1 + T \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.03076584767465, −15.16064124212409, −14.66136812890578, −14.29668452657629, −13.97973060510750, −13.08810961930627, −12.54852170457297, −11.95596971473204, −11.64064705319712, −10.96729313922718, −10.34391449854718, −9.783771916956431, −9.117766829887316, −8.639965905024436, −8.113404733707942, −7.378218507766687, −6.743588274978109, −6.140493870477550, −5.551297015638893, −4.962313317526125, −4.053312015909508, −3.513585863746641, −2.821574062761505, −1.927160774583427, −1.104601996621796, 0, 1.104601996621796, 1.927160774583427, 2.821574062761505, 3.513585863746641, 4.053312015909508, 4.962313317526125, 5.551297015638893, 6.140493870477550, 6.743588274978109, 7.378218507766687, 8.113404733707942, 8.639965905024436, 9.117766829887316, 9.783771916956431, 10.34391449854718, 10.96729313922718, 11.64064705319712, 11.95596971473204, 12.54852170457297, 13.08810961930627, 13.97973060510750, 14.29668452657629, 14.66136812890578, 15.16064124212409, 16.03076584767465

Graph of the $Z$-function along the critical line