Properties

Label 2-207368-1.1-c1-0-29
Degree $2$
Conductor $207368$
Sign $-1$
Analytic cond. $1655.84$
Root an. cond. $40.6920$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 5-s + 6·9-s + 11-s + 2·13-s + 3·15-s − 3·17-s − 5·19-s − 4·25-s + 9·27-s − 6·29-s − 31-s + 3·33-s + 5·37-s + 6·39-s − 10·41-s + 4·43-s + 6·45-s + 47-s − 9·51-s + 9·53-s + 55-s − 15·57-s + 3·59-s − 3·61-s + 2·65-s − 11·67-s + ⋯
L(s)  = 1  + 1.73·3-s + 0.447·5-s + 2·9-s + 0.301·11-s + 0.554·13-s + 0.774·15-s − 0.727·17-s − 1.14·19-s − 4/5·25-s + 1.73·27-s − 1.11·29-s − 0.179·31-s + 0.522·33-s + 0.821·37-s + 0.960·39-s − 1.56·41-s + 0.609·43-s + 0.894·45-s + 0.145·47-s − 1.26·51-s + 1.23·53-s + 0.134·55-s − 1.98·57-s + 0.390·59-s − 0.384·61-s + 0.248·65-s − 1.34·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 207368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 207368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(207368\)    =    \(2^{3} \cdot 7^{2} \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(1655.84\)
Root analytic conductor: \(40.6920\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 207368,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
23 \( 1 \)
good3 \( 1 - p T + p T^{2} \) 1.3.ad
5 \( 1 - T + p T^{2} \) 1.5.ab
11 \( 1 - T + p T^{2} \) 1.11.ab
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 5 T + p T^{2} \) 1.19.f
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 - 5 T + p T^{2} \) 1.37.af
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - T + p T^{2} \) 1.47.ab
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 + 3 T + p T^{2} \) 1.61.d
67 \( 1 + 11 T + p T^{2} \) 1.67.l
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 - 11 T + p T^{2} \) 1.79.al
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.46411987688119, −13.09899923100921, −12.42560816869283, −12.04952110123711, −11.23735080039923, −10.87874344610000, −10.35674098783709, −9.763114955941614, −9.395131003474505, −9.029679248667212, −8.523671773103439, −8.206501167242139, −7.660406539476219, −7.161149374700995, −6.568981799713630, −6.203284961394210, −5.507336210955663, −4.846175656457524, −4.136104002470345, −3.830508959544383, −3.421533243737888, −2.556130211769026, −2.210458197556765, −1.791421446780028, −1.085903384754784, 0, 1.085903384754784, 1.791421446780028, 2.210458197556765, 2.556130211769026, 3.421533243737888, 3.830508959544383, 4.136104002470345, 4.846175656457524, 5.507336210955663, 6.203284961394210, 6.568981799713630, 7.161149374700995, 7.660406539476219, 8.206501167242139, 8.523671773103439, 9.029679248667212, 9.395131003474505, 9.763114955941614, 10.35674098783709, 10.87874344610000, 11.23735080039923, 12.04952110123711, 12.42560816869283, 13.09899923100921, 13.46411987688119

Graph of the $Z$-function along the critical line