Properties

Label 2-206492-1.1-c1-0-6
Degree $2$
Conductor $206492$
Sign $1$
Analytic cond. $1648.84$
Root an. cond. $40.6059$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 3·5-s + 2·7-s − 2·9-s + 11-s − 13-s − 3·15-s − 2·21-s − 3·23-s + 4·25-s + 5·27-s + 6·29-s + 31-s − 33-s + 6·35-s + 7·37-s + 39-s − 6·41-s + 8·43-s − 6·45-s + 12·47-s − 3·49-s + 6·53-s + 3·55-s − 9·59-s + 2·61-s − 4·63-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.34·5-s + 0.755·7-s − 2/3·9-s + 0.301·11-s − 0.277·13-s − 0.774·15-s − 0.436·21-s − 0.625·23-s + 4/5·25-s + 0.962·27-s + 1.11·29-s + 0.179·31-s − 0.174·33-s + 1.01·35-s + 1.15·37-s + 0.160·39-s − 0.937·41-s + 1.21·43-s − 0.894·45-s + 1.75·47-s − 3/7·49-s + 0.824·53-s + 0.404·55-s − 1.17·59-s + 0.256·61-s − 0.503·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 206492 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 206492 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(206492\)    =    \(2^{2} \cdot 11 \cdot 13 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(1648.84\)
Root analytic conductor: \(40.6059\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 206492,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.450675731\)
\(L(\frac12)\) \(\approx\) \(3.450675731\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
11 \( 1 - T \)
13 \( 1 + T \)
19 \( 1 \)
good3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
17 \( 1 + p T^{2} \) 1.17.a
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 - 13 T + p T^{2} \) 1.97.an
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.04143410679471, −12.39815621608600, −12.16693324480664, −11.59284926252028, −11.15835918243218, −10.71243309083865, −10.21725194270925, −9.849612517412116, −9.268208446486938, −8.841102180612647, −8.348999666111287, −7.824315382546568, −7.261388412032722, −6.574740827316901, −6.114571268757061, −5.913894598311964, −5.209469399923577, −4.944290187636797, −4.317742043186739, −3.674336767728941, −2.774409856596078, −2.417287228221147, −1.865144259728538, −1.110680225735760, −0.5896519763778879, 0.5896519763778879, 1.110680225735760, 1.865144259728538, 2.417287228221147, 2.774409856596078, 3.674336767728941, 4.317742043186739, 4.944290187636797, 5.209469399923577, 5.913894598311964, 6.114571268757061, 6.574740827316901, 7.261388412032722, 7.824315382546568, 8.348999666111287, 8.841102180612647, 9.268208446486938, 9.849612517412116, 10.21725194270925, 10.71243309083865, 11.15835918243218, 11.59284926252028, 12.16693324480664, 12.39815621608600, 13.04143410679471

Graph of the $Z$-function along the critical line