Properties

Label 2-20631-1.1-c1-0-5
Degree $2$
Conductor $20631$
Sign $-1$
Analytic cond. $164.739$
Root an. cond. $12.8350$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s − 4-s − 2·5-s − 6-s + 4·7-s − 3·8-s + 9-s − 2·10-s − 4·11-s + 12-s + 13-s + 4·14-s + 2·15-s − 16-s − 2·17-s + 18-s + 2·20-s − 4·21-s − 4·22-s + 3·24-s − 25-s + 26-s − 27-s − 4·28-s − 10·29-s + 2·30-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s − 1/2·4-s − 0.894·5-s − 0.408·6-s + 1.51·7-s − 1.06·8-s + 1/3·9-s − 0.632·10-s − 1.20·11-s + 0.288·12-s + 0.277·13-s + 1.06·14-s + 0.516·15-s − 1/4·16-s − 0.485·17-s + 0.235·18-s + 0.447·20-s − 0.872·21-s − 0.852·22-s + 0.612·24-s − 1/5·25-s + 0.196·26-s − 0.192·27-s − 0.755·28-s − 1.85·29-s + 0.365·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 20631 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 20631 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(20631\)    =    \(3 \cdot 13 \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(164.739\)
Root analytic conductor: \(12.8350\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 20631,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 + T \)
13 \( 1 - T \)
23 \( 1 \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.76585620841370, −15.28766404083386, −14.81666128085682, −14.28345145824823, −13.73218037577884, −13.02028576937107, −12.76854316648607, −12.03985806380365, −11.49020844727979, −11.09521942142235, −10.72658994658946, −9.798654995826896, −9.179817676641026, −8.403501344078620, −7.953147738690893, −7.574007993845584, −6.759963282232970, −5.652879086348631, −5.569625537251136, −4.817152098207844, −4.182358722571711, −3.956374869237469, −2.838689374136893, −2.061085853197599, −0.9044809538838308, 0, 0.9044809538838308, 2.061085853197599, 2.838689374136893, 3.956374869237469, 4.182358722571711, 4.817152098207844, 5.569625537251136, 5.652879086348631, 6.759963282232970, 7.574007993845584, 7.953147738690893, 8.403501344078620, 9.179817676641026, 9.798654995826896, 10.72658994658946, 11.09521942142235, 11.49020844727979, 12.03985806380365, 12.76854316648607, 13.02028576937107, 13.73218037577884, 14.28345145824823, 14.81666128085682, 15.28766404083386, 15.76585620841370

Graph of the $Z$-function along the critical line