Properties

Label 20631.g
Number of curves $4$
Conductor $20631$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 20631.g have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 + T\)
\(13\)\(1 - T\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 20631.g do not have complex multiplication.

Modular form 20631.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} - q^{4} - 2 q^{5} - q^{6} + 4 q^{7} - 3 q^{8} + q^{9} - 2 q^{10} - 4 q^{11} + q^{12} + q^{13} + 4 q^{14} + 2 q^{15} - q^{16} - 2 q^{17} + q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 20631.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
20631.g1 20631a4 \([1, 1, 0, -36776, 2699199]\) \(37159393753/1053\) \(155881791117\) \([2]\) \(50688\) \(1.2494\)  
20631.g2 20631a3 \([1, 1, 0, -10326, -370059]\) \(822656953/85683\) \(12684159077187\) \([2]\) \(50688\) \(1.2494\)  
20631.g3 20631a2 \([1, 1, 0, -2391, 37800]\) \(10218313/1521\) \(225162587169\) \([2, 2]\) \(25344\) \(0.90281\)  
20631.g4 20631a1 \([1, 1, 0, 254, 3415]\) \(12167/39\) \(-5773399671\) \([2]\) \(12672\) \(0.55623\) \(\Gamma_0(N)\)-optimal