Properties

Label 2-204490-1.1-c1-0-16
Degree $2$
Conductor $204490$
Sign $1$
Analytic cond. $1632.86$
Root an. cond. $40.4086$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2·3-s + 4-s + 5-s − 2·6-s − 8-s + 9-s − 10-s + 2·12-s + 2·15-s + 16-s + 6·17-s − 18-s + 20-s − 6·23-s − 2·24-s + 25-s − 4·27-s − 2·30-s − 4·31-s − 32-s − 6·34-s + 36-s + 2·37-s − 40-s − 12·41-s − 12·43-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.15·3-s + 1/2·4-s + 0.447·5-s − 0.816·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.577·12-s + 0.516·15-s + 1/4·16-s + 1.45·17-s − 0.235·18-s + 0.223·20-s − 1.25·23-s − 0.408·24-s + 1/5·25-s − 0.769·27-s − 0.365·30-s − 0.718·31-s − 0.176·32-s − 1.02·34-s + 1/6·36-s + 0.328·37-s − 0.158·40-s − 1.87·41-s − 1.82·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 204490 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 204490 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(204490\)    =    \(2 \cdot 5 \cdot 11^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1632.86\)
Root analytic conductor: \(40.4086\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 204490,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.033779513\)
\(L(\frac12)\) \(\approx\) \(2.033779513\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 - T \)
11 \( 1 \)
13 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 + p T^{2} \) 1.7.a
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.05608513482936, −12.70007942806720, −11.92346020783256, −11.70241669214719, −11.19331784746813, −10.29316282991440, −10.17279334045137, −9.644017353406697, −9.418423653566534, −8.528267753330334, −8.448083557852652, −8.006913300055641, −7.451675618450849, −6.991893435923325, −6.352414570671511, −5.877515704274307, −5.285834813244807, −4.811897862782977, −3.808284571871025, −3.471257607217245, −3.051160337636401, −2.330800665902119, −1.777210813536590, −1.437780860384723, −0.3909117331680548, 0.3909117331680548, 1.437780860384723, 1.777210813536590, 2.330800665902119, 3.051160337636401, 3.471257607217245, 3.808284571871025, 4.811897862782977, 5.285834813244807, 5.877515704274307, 6.352414570671511, 6.991893435923325, 7.451675618450849, 8.006913300055641, 8.448083557852652, 8.528267753330334, 9.418423653566534, 9.644017353406697, 10.17279334045137, 10.29316282991440, 11.19331784746813, 11.70241669214719, 11.92346020783256, 12.70007942806720, 13.05608513482936

Graph of the $Z$-function along the critical line