Properties

Label 2-20160-1.1-c1-0-86
Degree $2$
Conductor $20160$
Sign $-1$
Analytic cond. $160.978$
Root an. cond. $12.6877$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 7-s − 11-s + 13-s − 17-s + 4·23-s + 25-s − 29-s − 10·31-s + 35-s + 8·37-s − 2·41-s − 4·43-s + 11·47-s + 49-s + 4·53-s + 55-s − 8·59-s − 10·61-s − 65-s − 4·67-s + 12·71-s + 6·73-s + 77-s − 7·79-s + 8·83-s + 85-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.377·7-s − 0.301·11-s + 0.277·13-s − 0.242·17-s + 0.834·23-s + 1/5·25-s − 0.185·29-s − 1.79·31-s + 0.169·35-s + 1.31·37-s − 0.312·41-s − 0.609·43-s + 1.60·47-s + 1/7·49-s + 0.549·53-s + 0.134·55-s − 1.04·59-s − 1.28·61-s − 0.124·65-s − 0.488·67-s + 1.42·71-s + 0.702·73-s + 0.113·77-s − 0.787·79-s + 0.878·83-s + 0.108·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 20160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 20160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(20160\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(160.978\)
Root analytic conductor: \(12.6877\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 20160,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 + T \)
good11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + T + p T^{2} \) 1.17.b
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 11 T + p T^{2} \) 1.47.al
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 7 T + p T^{2} \) 1.79.h
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.87601093027008, −15.35341589686052, −14.94979658573733, −14.37821158118494, −13.59674740455603, −13.24206894226392, −12.61567381880471, −12.19577235461641, −11.44942424391362, −10.90854439240280, −10.58123772960752, −9.743940153130950, −9.103095491648532, −8.814353137448339, −7.870823837254521, −7.515169325136221, −6.840786164114800, −6.200965977578187, −5.524788186696835, −4.891028035565079, −4.120357731432609, −3.522783591011590, −2.832744728564297, −2.016337503413102, −0.9924089833752980, 0, 0.9924089833752980, 2.016337503413102, 2.832744728564297, 3.522783591011590, 4.120357731432609, 4.891028035565079, 5.524788186696835, 6.200965977578187, 6.840786164114800, 7.515169325136221, 7.870823837254521, 8.814353137448339, 9.103095491648532, 9.743940153130950, 10.58123772960752, 10.90854439240280, 11.44942424391362, 12.19577235461641, 12.61567381880471, 13.24206894226392, 13.59674740455603, 14.37821158118494, 14.94979658573733, 15.35341589686052, 15.87601093027008

Graph of the $Z$-function along the critical line