Properties

Label 2-198550-1.1-c1-0-41
Degree $2$
Conductor $198550$
Sign $-1$
Analytic cond. $1585.42$
Root an. cond. $39.8174$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2·3-s + 4-s − 2·6-s − 4·7-s + 8-s + 9-s + 11-s − 2·12-s − 2·13-s − 4·14-s + 16-s + 2·17-s + 18-s + 8·21-s + 22-s − 2·24-s − 2·26-s + 4·27-s − 4·28-s − 6·29-s + 6·31-s + 32-s − 2·33-s + 2·34-s + 36-s − 4·37-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.15·3-s + 1/2·4-s − 0.816·6-s − 1.51·7-s + 0.353·8-s + 1/3·9-s + 0.301·11-s − 0.577·12-s − 0.554·13-s − 1.06·14-s + 1/4·16-s + 0.485·17-s + 0.235·18-s + 1.74·21-s + 0.213·22-s − 0.408·24-s − 0.392·26-s + 0.769·27-s − 0.755·28-s − 1.11·29-s + 1.07·31-s + 0.176·32-s − 0.348·33-s + 0.342·34-s + 1/6·36-s − 0.657·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 198550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 198550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(198550\)    =    \(2 \cdot 5^{2} \cdot 11 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(1585.42\)
Root analytic conductor: \(39.8174\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 198550,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 \)
11 \( 1 - T \)
19 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 6 T + p T^{2} \) 1.67.g
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.17591083288705, −12.70177565579337, −12.41924251492185, −11.97678190743563, −11.51767131373069, −11.15023561357720, −10.51875914554863, −10.02085229822109, −9.826114326808558, −9.134967048826752, −8.655539727944916, −7.854488533190101, −7.318551618812821, −6.870811012883364, −6.384626923977778, −6.025237960307617, −5.626934749783425, −5.071666779991039, −4.553628228269660, −3.950617378318653, −3.357411639337527, −2.925393737929996, −2.302898432886576, −1.427744405816366, −0.6508241755256568, 0, 0.6508241755256568, 1.427744405816366, 2.302898432886576, 2.925393737929996, 3.357411639337527, 3.950617378318653, 4.553628228269660, 5.071666779991039, 5.626934749783425, 6.025237960307617, 6.384626923977778, 6.870811012883364, 7.318551618812821, 7.854488533190101, 8.655539727944916, 9.134967048826752, 9.826114326808558, 10.02085229822109, 10.51875914554863, 11.15023561357720, 11.51767131373069, 11.97678190743563, 12.41924251492185, 12.70177565579337, 13.17591083288705

Graph of the $Z$-function along the critical line