Properties

Label 2-19536-1.1-c1-0-0
Degree $2$
Conductor $19536$
Sign $1$
Analytic cond. $155.995$
Root an. cond. $12.4898$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·5-s − 4·7-s + 9-s − 11-s − 2·15-s − 6·19-s + 4·21-s − 8·23-s − 25-s − 27-s + 8·29-s − 4·31-s + 33-s − 8·35-s + 37-s − 10·41-s − 10·43-s + 2·45-s − 8·47-s + 9·49-s − 14·53-s − 2·55-s + 6·57-s − 8·61-s − 4·63-s + 12·67-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.894·5-s − 1.51·7-s + 1/3·9-s − 0.301·11-s − 0.516·15-s − 1.37·19-s + 0.872·21-s − 1.66·23-s − 1/5·25-s − 0.192·27-s + 1.48·29-s − 0.718·31-s + 0.174·33-s − 1.35·35-s + 0.164·37-s − 1.56·41-s − 1.52·43-s + 0.298·45-s − 1.16·47-s + 9/7·49-s − 1.92·53-s − 0.269·55-s + 0.794·57-s − 1.02·61-s − 0.503·63-s + 1.46·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19536 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19536 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19536\)    =    \(2^{4} \cdot 3 \cdot 11 \cdot 37\)
Sign: $1$
Analytic conductor: \(155.995\)
Root analytic conductor: \(12.4898\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 19536,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4902838209\)
\(L(\frac12)\) \(\approx\) \(0.4902838209\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 + T \)
37 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + 4 T + p T^{2} \) 1.31.e
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.62989097572733, −15.45837699926962, −14.50395436386533, −13.96340782124494, −13.34964973813882, −13.03555615586118, −12.40335719639879, −12.03856567763473, −11.22506585919643, −10.50533113155215, −10.01978900475321, −9.831399413090141, −9.126281154652074, −8.336084798386118, −7.820858997998836, −6.688845474813289, −6.403194973546671, −6.182598547230908, −5.275361375902123, −4.711502764629490, −3.770294305209675, −3.214707152836940, −2.244831769075350, −1.689214588722664, −0.2828633783239288, 0.2828633783239288, 1.689214588722664, 2.244831769075350, 3.214707152836940, 3.770294305209675, 4.711502764629490, 5.275361375902123, 6.182598547230908, 6.403194973546671, 6.688845474813289, 7.820858997998836, 8.336084798386118, 9.126281154652074, 9.831399413090141, 10.01978900475321, 10.50533113155215, 11.22506585919643, 12.03856567763473, 12.40335719639879, 13.03555615586118, 13.34964973813882, 13.96340782124494, 14.50395436386533, 15.45837699926962, 15.62989097572733

Graph of the $Z$-function along the critical line