Properties

Label 2-194208-1.1-c1-0-0
Degree $2$
Conductor $194208$
Sign $1$
Analytic cond. $1550.75$
Root an. cond. $39.3796$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s − 7-s + 9-s + 4·11-s + 2·13-s + 2·15-s − 4·19-s + 21-s − 8·23-s − 25-s − 27-s − 6·29-s − 8·31-s − 4·33-s + 2·35-s − 6·37-s − 2·39-s + 10·41-s + 4·43-s − 2·45-s + 8·47-s + 49-s − 6·53-s − 8·55-s + 4·57-s + 8·59-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s − 0.377·7-s + 1/3·9-s + 1.20·11-s + 0.554·13-s + 0.516·15-s − 0.917·19-s + 0.218·21-s − 1.66·23-s − 1/5·25-s − 0.192·27-s − 1.11·29-s − 1.43·31-s − 0.696·33-s + 0.338·35-s − 0.986·37-s − 0.320·39-s + 1.56·41-s + 0.609·43-s − 0.298·45-s + 1.16·47-s + 1/7·49-s − 0.824·53-s − 1.07·55-s + 0.529·57-s + 1.04·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 194208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 194208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(194208\)    =    \(2^{5} \cdot 3 \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(1550.75\)
Root analytic conductor: \(39.3796\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 194208,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5532408624\)
\(L(\frac12)\) \(\approx\) \(0.5532408624\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 + T \)
17 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.12444654309197, −12.32410928842503, −12.28062832332474, −11.64567863632791, −11.29231780319520, −10.83963596788135, −10.40707584808952, −9.754177645772916, −9.327589043882500, −8.768530480255633, −8.442317292456890, −7.658198622868593, −7.334563419287416, −6.899754449716451, −6.121605154560554, −5.933843406431332, −5.488205036761500, −4.370297339846405, −4.280428299708039, −3.670067592337243, −3.429520659820686, −2.257333763680045, −1.855799105686818, −1.052939462042110, −0.2443841967198096, 0.2443841967198096, 1.052939462042110, 1.855799105686818, 2.257333763680045, 3.429520659820686, 3.670067592337243, 4.280428299708039, 4.370297339846405, 5.488205036761500, 5.933843406431332, 6.121605154560554, 6.899754449716451, 7.334563419287416, 7.658198622868593, 8.442317292456890, 8.768530480255633, 9.327589043882500, 9.754177645772916, 10.40707584808952, 10.83963596788135, 11.29231780319520, 11.64567863632791, 12.28062832332474, 12.32410928842503, 13.12444654309197

Graph of the $Z$-function along the critical line