Properties

Label 2-193550-1.1-c1-0-10
Degree $2$
Conductor $193550$
Sign $1$
Analytic cond. $1545.50$
Root an. cond. $39.3129$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 8-s − 2·9-s + 4·11-s − 12-s − 4·13-s + 16-s + 2·17-s + 2·18-s − 6·19-s − 4·22-s − 23-s + 24-s + 4·26-s + 5·27-s + 3·29-s + 4·31-s − 32-s − 4·33-s − 2·34-s − 2·36-s + 6·37-s + 6·38-s + 4·39-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.353·8-s − 2/3·9-s + 1.20·11-s − 0.288·12-s − 1.10·13-s + 1/4·16-s + 0.485·17-s + 0.471·18-s − 1.37·19-s − 0.852·22-s − 0.208·23-s + 0.204·24-s + 0.784·26-s + 0.962·27-s + 0.557·29-s + 0.718·31-s − 0.176·32-s − 0.696·33-s − 0.342·34-s − 1/3·36-s + 0.986·37-s + 0.973·38-s + 0.640·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 193550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 193550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(193550\)    =    \(2 \cdot 5^{2} \cdot 7^{2} \cdot 79\)
Sign: $1$
Analytic conductor: \(1545.50\)
Root analytic conductor: \(39.3129\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 193550,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.031835743\)
\(L(\frac12)\) \(\approx\) \(1.031835743\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
79 \( 1 - T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - T + p T^{2} \) 1.41.ab
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
83 \( 1 - 15 T + p T^{2} \) 1.83.ap
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.89404420754535, −12.36632489190472, −12.06170342088449, −11.74308191736175, −11.16386160838571, −10.74601781777901, −10.30476390800260, −9.752026967714186, −9.329933401643466, −8.878915188576678, −8.348149962873069, −7.902951929723983, −7.381968570863459, −6.736961048721282, −6.226379022704584, −6.153910894723266, −5.335336448216692, −4.713057756641870, −4.333409546340581, −3.578037269485603, −2.905009243086693, −2.387132948111352, −1.760663689809965, −0.9605338270063804, −0.4003035642041004, 0.4003035642041004, 0.9605338270063804, 1.760663689809965, 2.387132948111352, 2.905009243086693, 3.578037269485603, 4.333409546340581, 4.713057756641870, 5.335336448216692, 6.153910894723266, 6.226379022704584, 6.736961048721282, 7.381968570863459, 7.902951929723983, 8.348149962873069, 8.878915188576678, 9.329933401643466, 9.752026967714186, 10.30476390800260, 10.74601781777901, 11.16386160838571, 11.74308191736175, 12.06170342088449, 12.36632489190472, 12.89404420754535

Graph of the $Z$-function along the critical line