Properties

Label 2-193550-1.1-c1-0-37
Degree $2$
Conductor $193550$
Sign $1$
Analytic cond. $1545.50$
Root an. cond. $39.3129$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 6-s − 8-s − 2·9-s + 2·11-s + 12-s + 2·13-s + 16-s + 4·17-s + 2·18-s + 6·19-s − 2·22-s + 7·23-s − 24-s − 2·26-s − 5·27-s + 5·29-s − 6·31-s − 32-s + 2·33-s − 4·34-s − 2·36-s + 2·37-s − 6·38-s + 2·39-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s − 0.353·8-s − 2/3·9-s + 0.603·11-s + 0.288·12-s + 0.554·13-s + 1/4·16-s + 0.970·17-s + 0.471·18-s + 1.37·19-s − 0.426·22-s + 1.45·23-s − 0.204·24-s − 0.392·26-s − 0.962·27-s + 0.928·29-s − 1.07·31-s − 0.176·32-s + 0.348·33-s − 0.685·34-s − 1/3·36-s + 0.328·37-s − 0.973·38-s + 0.320·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 193550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 193550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(193550\)    =    \(2 \cdot 5^{2} \cdot 7^{2} \cdot 79\)
Sign: $1$
Analytic conductor: \(1545.50\)
Root analytic conductor: \(39.3129\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 193550,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.230895643\)
\(L(\frac12)\) \(\approx\) \(3.230895643\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
79 \( 1 + T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 7 T + p T^{2} \) 1.23.ah
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 4 T + p T^{2} \) 1.73.e
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 - 7 T + p T^{2} \) 1.89.ah
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.07440709034728, −12.65582256150929, −11.96895062407311, −11.57534026015120, −11.30039413658960, −10.69732601152021, −10.21917990301369, −9.525605076449459, −9.346818739110885, −8.880934602203241, −8.338907344589269, −7.973373966016065, −7.437109381381173, −6.945233631404820, −6.486433239224263, −5.719154323687470, −5.455574711590310, −4.843672899485176, −3.923915594736785, −3.473808890150761, −3.018801647798437, −2.533750786096240, −1.718017347518153, −1.070797638356916, −0.6429809001083153, 0.6429809001083153, 1.070797638356916, 1.718017347518153, 2.533750786096240, 3.018801647798437, 3.473808890150761, 3.923915594736785, 4.843672899485176, 5.455574711590310, 5.719154323687470, 6.486433239224263, 6.945233631404820, 7.437109381381173, 7.973373966016065, 8.338907344589269, 8.880934602203241, 9.346818739110885, 9.525605076449459, 10.21917990301369, 10.69732601152021, 11.30039413658960, 11.57534026015120, 11.96895062407311, 12.65582256150929, 13.07440709034728

Graph of the $Z$-function along the critical line